Added suggested SLM down sampling factor, improved quite a lot of documentation. Measurement object can now work with old, as well as new measurement files.
This commit is contained in:
parent
59085b091f
commit
bb26fc6bcc
@ -11,7 +11,7 @@ __version__ = lasp_cpp.__version__
|
||||
# from .lasp_imptube import * # TwoMicImpedanceTube
|
||||
from .lasp_measurement import * # Measurement, scaleBlockSens
|
||||
from .lasp_octavefilter import *
|
||||
# from .lasp_slm import * # SLM, Dummy
|
||||
from .lasp_slm import * # SLM, Dummy
|
||||
from .lasp_record import * # RecordStatus, Recording
|
||||
from .lasp_daqconfigs import *
|
||||
# from .lasp_siggen import * # SignalType, NoiseType, SiggenMessage, SiggenData, Siggen
|
||||
|
@ -200,6 +200,19 @@ public:
|
||||
* output.
|
||||
*/
|
||||
double digitalHighPassCutOn = -1;
|
||||
|
||||
/**
|
||||
* @brief Compare two channels to eachother. They are equal when the name,
|
||||
* sensitivity and quantity are the same.
|
||||
*
|
||||
* @param other The DaqChannel to compare with
|
||||
*
|
||||
* @return true if equal
|
||||
*/
|
||||
bool operator==(const DaqChannel& other) const {
|
||||
return other.name == name && other.sensitivity == sensitivity &&
|
||||
other.qty == qty;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -7,6 +7,10 @@
|
||||
#include <optional>
|
||||
|
||||
/** \defgroup dsp Digital Signal Processing utilities
|
||||
* These are classes and functions used for processing raw signal data, to
|
||||
* obtain statistics.
|
||||
*
|
||||
*
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
#include "lasp_filter.h"
|
||||
|
||||
/**
|
||||
* \ingroup dsp
|
||||
* \addtogroup dsp
|
||||
* @{
|
||||
*/
|
||||
|
||||
@ -53,7 +53,8 @@ public:
|
||||
/**
|
||||
* @brief Initialize biquadbank.
|
||||
*
|
||||
* @param filters Filters for each filter in the bank
|
||||
* @param filters Filters for each filter in the bank. First axis isis the
|
||||
* coefficient index, second axis is the filter index.
|
||||
* @param gains Gain values. Given as pointer, if not given (nulltpr), gains
|
||||
* are initialized with unity gain.
|
||||
*/
|
||||
|
@ -9,29 +9,29 @@
|
||||
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
using std::runtime_error;
|
||||
using rte = std::runtime_error;
|
||||
using std::unique_ptr;
|
||||
|
||||
SLM::SLM(const d fs, const d Lref, const us downsampling_fac, const d tau,
|
||||
std::unique_ptr<Filter> pre_filter,
|
||||
std::vector<std::unique_ptr<Filter>> bandpass)
|
||||
: _pre_filter(std::move(pre_filter)), _bandpass(std::move(bandpass)),
|
||||
_alpha(exp(-1 / (fs * tau))),
|
||||
_sp_storage(_bandpass.size(), arma::fill::zeros), // Storage for
|
||||
// components of
|
||||
// single pole low pass
|
||||
// filter
|
||||
Lrefsq(Lref*Lref), // Reference level
|
||||
downsampling_fac(downsampling_fac),
|
||||
std::unique_ptr<Filter> pre_filter,
|
||||
std::vector<std::unique_ptr<Filter>> bandpass)
|
||||
: _pre_filter(std::move(pre_filter)), _bandpass(std::move(bandpass)),
|
||||
_alpha(exp(-1 / (fs * tau))),
|
||||
_sp_storage(_bandpass.size(), arma::fill::zeros), // Storage for
|
||||
// components of
|
||||
// single pole low pass
|
||||
// filter
|
||||
Lrefsq(Lref*Lref), // Reference level
|
||||
downsampling_fac(downsampling_fac),
|
||||
|
||||
// Initalize mean square
|
||||
Pm(_bandpass.size(), arma::fill::zeros),
|
||||
// Initalize mean square
|
||||
Pm(_bandpass.size(), arma::fill::zeros),
|
||||
|
||||
// Initalize max
|
||||
Pmax(_bandpass.size(), arma::fill::zeros),
|
||||
// Initalize max
|
||||
Pmax(_bandpass.size(), arma::fill::zeros),
|
||||
|
||||
// Initalize peak
|
||||
Ppeak(_bandpass.size(), arma::fill::zeros)
|
||||
// Initalize peak
|
||||
Ppeak(_bandpass.size(), arma::fill::zeros)
|
||||
|
||||
{
|
||||
DEBUGTRACE_ENTER;
|
||||
@ -40,13 +40,13 @@ SLM::SLM(const d fs, const d Lref, const us downsampling_fac, const d tau,
|
||||
getPool();
|
||||
|
||||
if (Lref <= 0) {
|
||||
throw runtime_error("Invalid reference level");
|
||||
throw rte("Invalid reference level");
|
||||
}
|
||||
if (tau <= 0) {
|
||||
throw runtime_error("Invalid time constant for Single pole lowpass filter");
|
||||
throw rte("Invalid time constant for Single pole lowpass filter");
|
||||
}
|
||||
if (fs <= 0) {
|
||||
throw runtime_error("Invalid sampling frequency");
|
||||
throw rte("Invalid sampling frequency");
|
||||
}
|
||||
}
|
||||
SLM::~SLM() {}
|
||||
@ -66,25 +66,40 @@ std::vector<unique_ptr<Filter>> createBandPass(const dmat &coefs) {
|
||||
}
|
||||
return bf;
|
||||
}
|
||||
us SLM::suggestedDownSamplingFac(const d fs,const d tau) {
|
||||
if(tau<0) throw rte("Invalid time weightin time constant");
|
||||
if(fs<=0) throw rte("Invalid sampling frequency");
|
||||
// A reasonable 'framerate' for the sound level meter, based on the
|
||||
// filtering time constant.
|
||||
if (tau > 0) {
|
||||
d fs_slm = 10 / tau;
|
||||
if(fs_slm < 30) {
|
||||
fs_slm = 30;
|
||||
}
|
||||
return std::max((us) 1, static_cast<us>(fs / fs_slm));
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
SLM SLM::fromBiquads(const d fs, const d Lref, const us downsampling_fac,
|
||||
const d tau, const vd &pre_filter_coefs,
|
||||
const dmat &bandpass_coefs) {
|
||||
const d tau, const vd &pre_filter_coefs,
|
||||
const dmat &bandpass_coefs) {
|
||||
DEBUGTRACE_ENTER;
|
||||
|
||||
return SLM(fs, Lref, downsampling_fac, tau,
|
||||
std::make_unique<SeriesBiquad>(pre_filter_coefs),
|
||||
createBandPass(bandpass_coefs));
|
||||
std::make_unique<SeriesBiquad>(pre_filter_coefs),
|
||||
createBandPass(bandpass_coefs));
|
||||
}
|
||||
SLM SLM::fromBiquads(const d fs, const d Lref, const us downsampling_fac,
|
||||
const d tau, const dmat &bandpass_coefs) {
|
||||
const d tau, const dmat &bandpass_coefs) {
|
||||
|
||||
DEBUGTRACE_ENTER;
|
||||
|
||||
return SLM(fs, Lref, downsampling_fac, tau,
|
||||
nullptr, // Pre-filter
|
||||
createBandPass(bandpass_coefs) // Bandpass coefficients
|
||||
);
|
||||
nullptr, // Pre-filter
|
||||
createBandPass(bandpass_coefs) // Bandpass coefficients
|
||||
);
|
||||
}
|
||||
|
||||
vd SLM::run_single(vd work,const us i) {
|
||||
@ -111,7 +126,7 @@ vd SLM::run_single(vd work,const us i) {
|
||||
for (us j = 0; j < work.n_rows; j++) {
|
||||
// Update mean square of signal, work is here still signal power
|
||||
Pm(i) = (Pm(i) * static_cast<d>(N_local) + work(j)) /
|
||||
(static_cast<d>(N_local) + 1);
|
||||
(static_cast<d>(N_local) + 1);
|
||||
|
||||
N_local++;
|
||||
|
||||
@ -146,7 +161,7 @@ dmat SLM::run(const vd &input_orig) {
|
||||
dmat res(input.n_rows, _bandpass.size());
|
||||
|
||||
// Perform operations in-place.
|
||||
|
||||
|
||||
#pragma omp parallel for
|
||||
for (us i = 0; i < _bandpass.size(); i++) {
|
||||
res.col(i) = run_single(input, i);
|
||||
@ -155,8 +170,8 @@ dmat SLM::run(const vd &input_orig) {
|
||||
/* DEBUGTRACE_PRINT(res.n_rows); */
|
||||
/* DEBUGTRACE_PRINT(futs.size()); */
|
||||
|
||||
// Update the total number of samples harvested so far. NOTE: *This should be
|
||||
// done AFTER the threads are done!!!*
|
||||
// Update the total number of samples harvested so far. NOTE: *This should be
|
||||
// done AFTER the threads are done!!!*
|
||||
}
|
||||
N += input.n_rows;
|
||||
|
||||
|
@ -98,7 +98,8 @@ public:
|
||||
* @param downsampling_fac Every 1/downsampling_fac value is returned from
|
||||
* compute()
|
||||
* @param tau Time consant of level meter
|
||||
* @param bandpass_coefs Biquad filter coeffiecients for bandpass filter
|
||||
* @param bandpass_coefs Biquad filter coefficients for bandpass filter. First axis isis the coefficient index, second axis is the filter index.
|
||||
|
||||
*
|
||||
* @return Sound Level Meter object
|
||||
*/
|
||||
@ -149,6 +150,20 @@ public:
|
||||
*/
|
||||
vd Lmax() const { return 10 * arma::log10(Pmax / Lrefsq); };
|
||||
|
||||
/**
|
||||
* @brief Comput a 'suggested' downsampling factor, i.e. a lower frame rate
|
||||
* at which sound level meter values are returned from the computation. This
|
||||
* is possible since the signal power is low-pas filtered with a single pole
|
||||
* low pass filter. It can remove computational burden, especially for
|
||||
* plotting, to have a value > 10.
|
||||
*
|
||||
* @param fs Sampling frequency of signal [Hz]
|
||||
* @param tw Time weighting of SLM low pass filter
|
||||
*
|
||||
* @return Suggested downsampling factor, no unit. [-]
|
||||
*/
|
||||
static us suggestedDownSamplingFac(const d fs,const d tw);
|
||||
|
||||
private:
|
||||
vd run_single(vd input, const us filter_no);
|
||||
};
|
||||
|
@ -460,7 +460,15 @@ class OctaveBankDesigner(FilterBankDesigner):
|
||||
|
||||
class ThirdOctaveBankDesigner(FilterBankDesigner):
|
||||
|
||||
def __init__(self, fs):
|
||||
def __init__(self, fs: float):
|
||||
"""
|
||||
Initialize ThirdOctaveBankDesigner, a filter bank designer for
|
||||
one-third octave bands
|
||||
|
||||
Args:
|
||||
fs: Sampling frequency in [Hz]
|
||||
|
||||
"""
|
||||
super().__init__(fs)
|
||||
self.xs = list(range(-16, 14))
|
||||
# Text corresponding to the nominal frequency
|
||||
|
@ -84,7 +84,6 @@ class Qty:
|
||||
|
||||
|
||||
|
||||
|
||||
@unique
|
||||
class SIQtys(Enum):
|
||||
N = Qty(name='Number',
|
||||
@ -113,26 +112,20 @@ class SIQtys(Enum):
|
||||
cpp_enum = DaqChannel.Qty.Voltage
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def fillComboBox(cb):
|
||||
"""
|
||||
Fill to a combobox
|
||||
|
||||
Args:
|
||||
cb: QComboBox to fill
|
||||
"""
|
||||
cb.clear()
|
||||
for ty in SIQtys:
|
||||
cb.addItem(f'{ty.value.unit_name}')
|
||||
cb.setCurrentIndex(0)
|
||||
|
||||
@staticmethod
|
||||
def default():
|
||||
return SIQtys.N.value
|
||||
|
||||
@staticmethod
|
||||
def getCurrent(cb):
|
||||
return list(SIQtys)[cb.currentIndex()]
|
||||
def fromCppEnum(enum):
|
||||
"""
|
||||
Convert enumeration index from - say - a measurement file back into
|
||||
physical quantity information.
|
||||
"""
|
||||
for qty in SIQtys:
|
||||
if qty.value.cpp_enum.value == enum:
|
||||
return qty.value
|
||||
raise RuntimeError(f'Qty corresponding to enum {enum} not found')
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -16,9 +16,13 @@ is assumed to be acoustic data.
|
||||
'sensitivity': (Optionally) the stored sensitivity of the record channels.
|
||||
This can be a single value, or a list of sensitivities for
|
||||
each channel. Both representations are allowed.
|
||||
|
||||
For measurement files of LASP < v1.0
|
||||
'qtys' : (Optionally): list of quantities that is recorded for each channel',
|
||||
if this array is not found. Quantities are defaulted to 'Number / Full scale'
|
||||
|
||||
For measurement files of LASP >= 1.0
|
||||
|
||||
- Datasets:
|
||||
|
||||
'audio': 3-dimensional array of blocks of audio data. The first axis is the
|
||||
@ -46,7 +50,7 @@ from .lasp_config import LASP_NUMPY_FLOAT_TYPE
|
||||
from scipy.io import wavfile
|
||||
import os, time, wave, logging
|
||||
from .lasp_common import SIQtys, Qty, getFreq
|
||||
from .lasp_cpp import Window, DaqChannel
|
||||
from .lasp_cpp import Window, DaqChannel, LASP_VERSION_MAJOR
|
||||
|
||||
|
||||
def getSampWidth(dtype):
|
||||
@ -208,6 +212,13 @@ class Measurement:
|
||||
self.N = (self.nblocks * self.blocksize)
|
||||
self.T = self.N / self.samplerate
|
||||
|
||||
try:
|
||||
self.version_major = f.attrs['LASP_VERSION_MAJOR']
|
||||
self.version_minor = f.attrs['LASP_VERSION_MINOR']
|
||||
except KeyError:
|
||||
self.version_major = 0
|
||||
self.version_minor = 1
|
||||
|
||||
# Due to a previous bug, the channel names were not stored
|
||||
# consistently, i.e. as 'channel_names' and later camelcase.
|
||||
try:
|
||||
@ -239,6 +250,7 @@ class Measurement:
|
||||
|
||||
self._time = f.attrs['time']
|
||||
|
||||
self._qtys = None
|
||||
try:
|
||||
qtys_json = f.attrs['qtys']
|
||||
# Load quantity data
|
||||
@ -246,9 +258,20 @@ class Measurement:
|
||||
except KeyError:
|
||||
# If quantity data is not available, this is an 'old'
|
||||
# measurement file.
|
||||
logging.debug(f'Physical quantity data not available in measurement file. Assuming {SIQtys.default}')
|
||||
self._qtys = [SIQtys.default() for i in range(self.nchannels)]
|
||||
pass
|
||||
|
||||
try:
|
||||
qtys_enum_idx = f.attrs['qtys_enum_idx']
|
||||
self._qtys = [SIQtys.fromCppEnum(idx) for idx in qtys_enum_idx]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
if self._qtys is None:
|
||||
self._qtys = [SIQtys.default() for i in range(self.nchannels)]
|
||||
logging.debug(f'Physical quantity data not available in measurement file. Assuming {SIQtys.default}')
|
||||
|
||||
|
||||
logging.debug(f'Physical quantity data not available in measurement file. Assuming {SIQtys.default}')
|
||||
def setAttribute(self, atrname, value):
|
||||
"""
|
||||
Set an attribute in the measurement file, and keep a local copy in
|
||||
@ -276,14 +299,15 @@ class Measurement:
|
||||
|
||||
@property
|
||||
def channelConfig(self):
|
||||
chcfg = [DaqChannel(channel_enabled=True,
|
||||
channel_name=chname,
|
||||
sensitivity=sens,)
|
||||
for chname, sens in zip(
|
||||
self.channelNames,
|
||||
self.sensitivity)]
|
||||
for i, qty in enumerate(self.qtys):
|
||||
chcfg[i].qty = qty
|
||||
chcfg = []
|
||||
for chname, sens, qty in zip(self.channelNames, self.sensitivity,
|
||||
self.qtys):
|
||||
ch = DaqChannel()
|
||||
ch.enabled = True
|
||||
ch.name = chname
|
||||
ch.sensitivity = sens
|
||||
ch.qty = qty.cpp_enum
|
||||
chcfg.append(ch)
|
||||
return chcfg
|
||||
|
||||
@channelConfig.setter
|
||||
@ -292,9 +316,9 @@ class Measurement:
|
||||
sens = []
|
||||
qtys = []
|
||||
for ch in chcfg:
|
||||
chname.append(ch.channel_name)
|
||||
chname.append(ch.name)
|
||||
sens.append(ch.sensitivity)
|
||||
qtys.append(ch.qty)
|
||||
qtys.append(SIQtys.fromCppEnum(ch.qty))
|
||||
|
||||
self.channelNames = chname
|
||||
self.sensitivity = sens
|
||||
|
@ -9,7 +9,8 @@ import os
|
||||
import time
|
||||
import h5py
|
||||
import numpy as np
|
||||
from .lasp_cpp import InDataHandler, StreamMgr
|
||||
from .lasp_cpp import (InDataHandler, StreamMgr, LASP_VERSION_MAJOR,
|
||||
LASP_VERSION_MINOR)
|
||||
from .lasp_atomic import Atomic
|
||||
|
||||
|
||||
@ -119,12 +120,16 @@ class Recording:
|
||||
|
||||
f = self.f
|
||||
|
||||
f.attrs['LASP_VERSION_MAJOR'] = LASP_VERSION_MAJOR
|
||||
f.attrs['LASP_VERSION_MINOR'] = LASP_VERSION_MINOR
|
||||
|
||||
# Set the bunch of attributes
|
||||
f.attrs['samplerate'] = daq.samplerate()
|
||||
f.attrs['nchannels'] = daq.neninchannels()
|
||||
f.attrs['blocksize'] = blocksize
|
||||
f.attrs['sensitivity'] = [ch.sensitivity for ch in in_ch]
|
||||
f.attrs['channelNames'] = [ch.name for ch in in_ch]
|
||||
# f.attrs['
|
||||
|
||||
# Add the start delay here, as firstFrames() is called right after the
|
||||
# constructor is called.
|
||||
|
@ -4,7 +4,7 @@
|
||||
Sound level meter implementation
|
||||
@author: J.A. de Jong - ASCEE
|
||||
"""
|
||||
from .lasp_cpp import SLM as cppSLM
|
||||
from .lasp_cpp import cppSLM
|
||||
import numpy as np
|
||||
from .lasp_common import (TimeWeighting, FreqWeighting, P_REF)
|
||||
from .filter import SPLFilterDesigner
|
||||
@ -33,8 +33,8 @@ class SLM:
|
||||
def __init__(self,
|
||||
fs,
|
||||
fbdesigner=None,
|
||||
tw=TimeWeighting.fast,
|
||||
fw=FreqWeighting.A,
|
||||
tw: TimeWeighting =TimeWeighting.fast,
|
||||
fw: FreqWeighting =FreqWeighting.A,
|
||||
xmin = None,
|
||||
xmax = None,
|
||||
include_overall=True,
|
||||
@ -50,7 +50,7 @@ class SLM:
|
||||
fs: Sampling frequency [Hz]
|
||||
tw: Time Weighting to apply
|
||||
fw: Frequency weighting to apply
|
||||
xmin: Filter designator of lowest band
|
||||
xmin: Filter designator of lowest band.
|
||||
xmax: Filter designator of highest band
|
||||
include_overall: If true, a non-functioning filter is added which
|
||||
is used to compute the overall level.
|
||||
@ -96,36 +96,42 @@ class SLM:
|
||||
assert fbdesigner.fs == fs
|
||||
sos_firstx = fbdesigner.createSOSFilter(self.xs[0]).flatten()
|
||||
self.nom_txt.append(fbdesigner.nominal_txt(self.xs[0]))
|
||||
sos = np.empty((nfilters, sos_firstx.size), dtype=float, order='C')
|
||||
sos[0, :] = sos_firstx
|
||||
sos = np.empty((sos_firstx.size, nfilters), dtype=float, order='C')
|
||||
sos[:, 0] = sos_firstx
|
||||
|
||||
for i, x in enumerate(self.xs[1:]):
|
||||
sos[i+1, :] = fbdesigner.createSOSFilter(x).flatten()
|
||||
sos[:, i+1] = fbdesigner.createSOSFilter(x).flatten()
|
||||
self.nom_txt.append(fbdesigner.nominal_txt(x))
|
||||
|
||||
if include_overall:
|
||||
# Create a unit impulse response filter, every third index equals
|
||||
# 1, so b0 = 1 and a0 is 1 (by definition)
|
||||
# a0 = 1, b0 = 1, rest is zero
|
||||
sos[-1,:] = sos_overall
|
||||
sos[:,-1] = sos_overall
|
||||
self.nom_txt.append('overall')
|
||||
|
||||
else:
|
||||
# No filterbank, means we do only compute the overall values. This
|
||||
# means that in case of include_overall, it creates two overall
|
||||
# channels. That would be confusing, so we do not allow it.
|
||||
sos = sos_overall[np.newaxis,:]
|
||||
sos = sos_overall[:,np.newaxis]
|
||||
self.nom_txt.append('overall')
|
||||
|
||||
self.slm = cppSLM(fs, prefilter, sos,
|
||||
fs, tw[0], level_ref_value)
|
||||
# Downsampling factor, determine from single pole low pass filter time
|
||||
# constant, such that aliasing is ~ allowed at 20 dB lower value
|
||||
# and
|
||||
dsfac = cppSLM.suggestedDownSamplingFac(fs, tw[0])
|
||||
|
||||
dsfac = self.slm.downsampling_fac
|
||||
if dsfac > 0:
|
||||
# Not unfiltered data
|
||||
self.fs_slm = fs / self.slm.downsampling_fac
|
||||
if prefilter is not None:
|
||||
self.slm = cppSLM.fromBiquads(fs, level_ref_value, dsfac,
|
||||
tw[0],
|
||||
prefilter, sos)
|
||||
else:
|
||||
self.fs_slm = fs
|
||||
self.slm = cppSLM.fromBiquads(fs, level_ref_value, dsfac,
|
||||
tw[0],
|
||||
sos)
|
||||
|
||||
self.fs_slm = fs / dsfac
|
||||
|
||||
# Initialize counter to 0
|
||||
self.N = 0
|
||||
@ -189,7 +195,6 @@ class SLM:
|
||||
output['mid'] = self.fbdesigner.fm(list(self.xs))
|
||||
logging.debug(list(self.xs))
|
||||
logging.debug(output['mid'])
|
||||
# Indiced at 0, as pyxSLM always returns 2D arrays.
|
||||
|
||||
if self.include_overall and self.fbdesigner is not None:
|
||||
output['overall'] = dat[-1,0]
|
||||
|
@ -69,6 +69,8 @@ void init_daqconfiguration(py::module &m) {
|
||||
.value("UserDefined", DaqChannel::Qty::UserDefined);
|
||||
daqchannel.def_readwrite("qty", &DaqChannel::qty);
|
||||
|
||||
daqchannel.def("__eq__", [](const DaqChannel& a, const DaqChannel& b) { return a==b;});
|
||||
|
||||
/// DaqConfiguration
|
||||
daqconfig.def(py::init<>());
|
||||
daqconfig.def(py::init<const DeviceInfo &>());
|
||||
|
@ -69,15 +69,16 @@ void init_dsp(py::module &m) {
|
||||
/// AvPowerSpectra
|
||||
py::class_<AvPowerSpectra> aps(m, "AvPowerSpectra");
|
||||
aps.def(py::init<const us, const Window::WindowType, const d, const int>(),
|
||||
py::arg("nfft"), py::arg("WindowType"), py::arg("overlap_percentage"),
|
||||
py::arg("time_constant"));
|
||||
py::arg("nfft") = 2048, py::arg("windowType") =Window::WindowType::Hann, py::arg("overlap_percentage") = 50.0,
|
||||
py::arg("time_constant") = -1);
|
||||
|
||||
aps.def("compute", [](AvPowerSpectra &aps, const dmat &timedata) {
|
||||
std::optional<arma::cx_cube> res = aps.compute(timedata);
|
||||
return res.value_or(arma::cx_cube(0,0,0));
|
||||
}
|
||||
);
|
||||
|
||||
py::class_<SLM> slm(m, "SLM");
|
||||
py::class_<SLM> slm(m, "cppSLM");
|
||||
|
||||
slm.def_static(
|
||||
"fromBiquads",
|
||||
@ -94,5 +95,6 @@ void init_dsp(py::module &m) {
|
||||
slm.def("Lpeak", &SLM::Lpeak);
|
||||
slm.def("Leq", &SLM::Leq);
|
||||
slm.def("Lmax", &SLM::Lmax);
|
||||
slm.def_static("suggestedDownSamplingFac", &SLM::suggestedDownSamplingFac);
|
||||
}
|
||||
/** @} */
|
||||
|
@ -2,6 +2,7 @@
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <functional>
|
||||
#include <stdint.h>
|
||||
|
||||
using std::cerr;
|
||||
@ -15,14 +16,14 @@ void init_streammgr(py::module &m) {
|
||||
m, "StreamMgr");
|
||||
|
||||
py::enum_<StreamMgr::StreamType>(smgr, "StreamType")
|
||||
.value("input", StreamMgr::StreamType::input)
|
||||
.value("output", StreamMgr::StreamType::output);
|
||||
.value("input", StreamMgr::StreamType::input)
|
||||
.value("output", StreamMgr::StreamType::output);
|
||||
|
||||
smgr.def("startStream", &StreamMgr::startStream);
|
||||
smgr.def("stopStream", &StreamMgr::stopStream);
|
||||
smgr.def_static("getInstance", []() {
|
||||
return std::unique_ptr<StreamMgr, py::nodelete>(&StreamMgr::getInstance());
|
||||
});
|
||||
return std::unique_ptr<StreamMgr, py::nodelete>(&StreamMgr::getInstance());
|
||||
});
|
||||
smgr.def("stopAllStreams", &StreamMgr::stopAllStreams);
|
||||
|
||||
smgr.def("setSiggen", &StreamMgr::setSiggen);
|
||||
@ -31,4 +32,11 @@ void init_streammgr(py::module &m) {
|
||||
smgr.def("isStreamRunningOK", &StreamMgr::isStreamRunningOK);
|
||||
smgr.def("isStreamRunning", &StreamMgr::isStreamRunning);
|
||||
smgr.def("getDaq", &StreamMgr::getDaq, py::return_value_policy::reference);
|
||||
smgr.def("rescanDAQDevices", [](StreamMgr& smgr, bool background) {
|
||||
// A pure C++ callback is the second argument to rescanDAQDevices, which
|
||||
// cannot be wrapped to Pybind11. Only the one without callback is
|
||||
// forwarded here to Python code.
|
||||
smgr.rescanDAQDevices(background);
|
||||
},
|
||||
py::arg("background")=false);
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
#!/usr/bin/python3
|
||||
import numpy as np
|
||||
from lasp import SLM
|
||||
from lasp import cppSLM
|
||||
from lasp.filter import SPLFilterDesigner
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
@ -11,7 +11,7 @@ def test_cppslm1():
|
||||
fs = 48000
|
||||
omg = 2*np.pi*1000
|
||||
|
||||
slm = SLM.fromBiquads(fs, 2e-5, 1, 0.125, [1.,0,0,1,0,0])
|
||||
slm = cppSLM.fromBiquads(fs, 2e-5, 1, 0.125, [1.,0,0,1,0,0])
|
||||
|
||||
t = np.linspace(0, 10, 10*fs, endpoint=False)
|
||||
|
||||
@ -40,7 +40,7 @@ def test_cppslm2():
|
||||
omg = 2*np.pi*1000
|
||||
|
||||
filt = SPLFilterDesigner(fs).A_Sos_design()
|
||||
slm = SLM.fromBiquads(fs, 2e-5, 0, 0.125, filt.flatten(), [1.,0,0,1,0,0])
|
||||
slm = cppSLM.fromBiquads(fs, 2e-5, 0, 0.125, filt.flatten(), [1.,0,0,1,0,0])
|
||||
|
||||
t = np.linspace(0, 10, 10*fs, endpoint=False)
|
||||
|
||||
@ -60,16 +60,33 @@ def test_cppslm2():
|
||||
# (Fast, Slow etc)
|
||||
assert np.isclose(out[-1,0], level, atol=1e-2)
|
||||
|
||||
def test_cppslm3():
|
||||
fs = 48000
|
||||
omg = 2*np.pi*1000
|
||||
|
||||
filt = SPLFilterDesigner(fs).A_Sos_design()
|
||||
slm = cppSLM.fromBiquads(fs, 2e-5, 0, 0.125, filt.flatten(), [1.,0,0,1,0,0])
|
||||
t = np.linspace(0, 10, 10*fs, endpoint=False)
|
||||
|
||||
in_ = 10*np.sin(omg*t) * np.sqrt(2)+np.random.randn()
|
||||
# Compute overall RMS
|
||||
rms = np.sqrt(np.sum(in_**2)/in_.size)
|
||||
# Compute overall level
|
||||
level = 20*np.log10(rms/2e-5)
|
||||
|
||||
|
||||
# Output of SLM
|
||||
out = slm.run(in_)
|
||||
|
||||
Lpeak = 20*np.log10(np.max(np.abs(in_)/2e-5))
|
||||
Lpeak
|
||||
slm.Lpeak()
|
||||
assert np.isclose(out[-1,0], slm.Leq()[0][0], atol=1e-2)
|
||||
assert np.isclose(Lpeak, slm.Lpeak()[0][0], atol=1e0)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cppslm1()
|
||||
test_cppslm2()
|
||||
|
||||
# plt.plot(t,out[:,0])
|
||||
# plt.close('all')
|
||||
# from scipy.signal import sosfreqz
|
||||
# omg, H = sosfreqz(filt)
|
||||
# freq = omg / (2*np.pi)*fs
|
||||
# plt.figure()
|
||||
# plt.semilogx(freq[1:],20*np.log10(np.abs(H[1:])))
|
||||
test_cppslm3()
|
||||
|
Loading…
x
Reference in New Issue
Block a user