Update to new smoothing algorithm. Should be made faster.
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
b3fb7ddb6d
commit
fa8f5e64ad
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Author: C. Jansen, J.A. de Jong - ASCEE V.O.F.
|
||||
Author: T. Hekman, C. Jansen, J.A. de Jong - ASCEE V.O.F.
|
||||
|
||||
Smooth data in the frequency domain.
|
||||
|
||||
@ -9,30 +9,17 @@ TODO: This function is rather slow as it uses [for loops] in Python. Speed up.
|
||||
NOTE: function requires lin frequency spaced input data
|
||||
TODO: accept input data that is not lin spaced in frequency
|
||||
TODO: it makes more sense to output data that is log spaced in frequency
|
||||
|
||||
Cutoff frequencies of window taken from
|
||||
http://www.huennebeck-online.de/software/download/src/index.html 15-10-2021
|
||||
math --> ReduceSpectrum.c --> ReduceSpectrum::smoothLogXScale()
|
||||
fl = fcenter / sqrt(2^(1/Noct)) # lower cutoff
|
||||
fu = fcenter * sqrt(2^(1/Noct)) # upper cutoff
|
||||
such that:
|
||||
sqrt(fl * fu) = fcenter
|
||||
fu = 2^(1/Noct) * fl
|
||||
|
||||
Smoothing window taken from
|
||||
https://www.ap.com/technical-library/deriving-fractional-octave-spectra-from-
|
||||
the-fft-with-apx/ 15-10-2021
|
||||
g = sqrt( 1/ ([1+[(f/fm - fm/f)*(1.507*b)]^6]) )
|
||||
where b = 3 for 1/3rd octave, f = frequency, fm = mid-band frequency, g = gain.
|
||||
Gain is related to magnitude; power is related to gain^2
|
||||
TODO: Make SmoothSpectralData() multi-dimensional array aware.
|
||||
TODO: Smoothing does not work due to complex numbers. Is it reasonable to
|
||||
smooth complex data? If so, the data could be split in magnitude and phase.
|
||||
"""
|
||||
|
||||
__all__ = ['SmoothingType', 'smoothSpectralData', 'SmoothingWidth']
|
||||
|
||||
from enum import Enum, unique
|
||||
import bisect
|
||||
import copy
|
||||
import numpy as np
|
||||
from numpy import log2, pi, sin
|
||||
|
||||
|
||||
@unique
|
||||
@ -73,6 +60,22 @@ class SmoothingType:
|
||||
|
||||
# TO DO: check if everything is correct
|
||||
# TO DO: add possibility to insert data that is not lin spaced in frequency
|
||||
# Integrated Hann window
|
||||
|
||||
def intHann(x1, x2):
|
||||
"""
|
||||
Calculate integral of (part of) Hann window.
|
||||
If the args are vectors, the return value will match those.
|
||||
|
||||
Args:
|
||||
x1: lower bound [-0.5, 0.5]
|
||||
x2: upper bound [-0.5, 0.5]
|
||||
Return:
|
||||
Integral of Hann window between x1 and x2
|
||||
"""
|
||||
x1 = np.clip(x1, -0.5, 0.5)
|
||||
x2 = np.clip(x2, -0.5, 0.5)
|
||||
return (sin(2*pi*x2) - sin(2*pi*x1))/(2*pi) + (x2-x1)
|
||||
|
||||
|
||||
def smoothCalcMatrix(freq, sw: SmoothingWidth):
|
||||
@ -83,12 +86,18 @@ def smoothCalcMatrix(freq, sw: SmoothingWidth):
|
||||
|
||||
Returns:
|
||||
freq: array frequencies of data points [Hz]
|
||||
Q: matrix to smooth power: {fsm} = [Q] * {fraw}
|
||||
Q: matrix to smooth, power: {fsm} = [Q] * {fraw}
|
||||
|
||||
Warning: this method does not work on levels (dB)
|
||||
|
||||
According to Tylka_JAES_SmoothingWeights.pdf
|
||||
"A Generalized Method for Fractional-Octave Smoothing of Transfer Functions
|
||||
that Preserves Log-Frequency Symmetry"
|
||||
https://doi.org/10.17743/jaes.2016.0053
|
||||
par 1.3
|
||||
eq. 16
|
||||
"""
|
||||
# Settings
|
||||
tr = 3 # truncate window after 2x std; shorter is faster and less accurate
|
||||
Noct = sw.value[0]
|
||||
assert Noct > 0, "'Noct' must be absolute positive"
|
||||
assert np.isclose(freq[-1]-freq[-2], freq[1]-freq[0]), "Input data must "\
|
||||
@ -100,44 +109,41 @@ def smoothCalcMatrix(freq, sw: SmoothingWidth):
|
||||
L = len(freq)
|
||||
Q = np.zeros(shape=(L, L), dtype=np.float16) # float16: keep size small
|
||||
Q[0, 0] = 1 # in case first point is skipped
|
||||
x0 = 1 if freq[0] == 0 else 0 # Skip first data point if zero frequency
|
||||
x0 = 1 if freq[0] == 0 else 0 # skip first data point if zero frequency
|
||||
|
||||
# Loop over indices of raw frequency vector
|
||||
for x in range(x0, L):
|
||||
# Find indices of data points to calculate current (smoothed) magnitude
|
||||
#
|
||||
# Indices beyond [0, L] point to non-existing data. Beyond 0 does not
|
||||
# occur in this implementation. Beyond L occurs when the smoothing
|
||||
# window nears the end of the series.
|
||||
# If one end of the window is truncated, the other end
|
||||
# could be truncated as well, to prevent an error on magnitude data
|
||||
# with a slope. It however results in unsmoothed looking data at the
|
||||
# end.
|
||||
fc = freq[x] # center freq. of smoothing window
|
||||
fl = fc / np.sqrt(2**(tr/Noct)) # lower cutoff
|
||||
fu = fc * np.sqrt(2**(tr/Noct)) # upper cutoff
|
||||
Noct /= 2 # corr. factor: window @ -3dB at Noct bounds (Noct/1.5 for -6dB)
|
||||
ifreq = freq/(freq[1]-freq[0]) # frequency, normalized to step=1
|
||||
ifreq = np.array(ifreq.astype(int))
|
||||
ifreqMin = ifreq[x0] # min. freq, normalized to step=1
|
||||
ifreqMax = ifreq[L-1] # max. freq, normalized to step=1
|
||||
sfact = 2**((1/Noct)/2) # bounds are this factor from the center freq
|
||||
|
||||
# If the upper (frequency) side of the window is truncated because
|
||||
# there is no data beyond the Nyquist frequency, also truncate the
|
||||
# other side to keep it symmetric in a log(frequency) scale.
|
||||
# So: fu / fc = fc / fl
|
||||
fNq = freq[-1]
|
||||
if fu > fNq:
|
||||
fu = fNq # no data beyond fNq
|
||||
fl = fc**2 / fu # keep window symmetric
|
||||
kpmin = np.floor(ifreq/sfact).astype(int) # min freq of window
|
||||
kpmax = np.ceil(ifreq*sfact).astype(int) # max freq of window
|
||||
|
||||
# Find indices corresponding to frequencies
|
||||
xl = bisect.bisect_left(freq, fl) # index corresponding to fl
|
||||
xu = bisect.bisect_right(freq, fu)
|
||||
for ff in range(x0, L): # loop over input freq
|
||||
# Find window bounds and actual smoothing width
|
||||
# Keep window symmetrical if one side is truncated
|
||||
if kpmin[ff] < ifreqMin:
|
||||
kpmin[ff] = ifreqMin
|
||||
kpmax[ff] = np.ceil(ifreq[ff]**2/ifreqMin) # decrease smooth width
|
||||
if np.isclose(kpmin[ff], kpmax[ff]):
|
||||
kpmax[ff] += 1
|
||||
NoctAct = 1/log2(kpmax[ff]/kpmin[ff])
|
||||
elif kpmax[ff] > ifreqMax:
|
||||
kpmin[ff] = np.floor(ifreq[ff]**2/ifreqMax) # decrease smoothwidth
|
||||
kpmax[ff] = ifreqMax
|
||||
if np.isclose(kpmin[ff], kpmax[ff]):
|
||||
kpmin[ff] -= 1
|
||||
NoctAct = 1/log2(kpmax[ff]/kpmin[ff])
|
||||
else:
|
||||
NoctAct = Noct
|
||||
|
||||
xl = xu-1 if xu-xl <= 0 else xl # Guarantee window length >= 1
|
||||
|
||||
# Calculate window
|
||||
xg = np.arange(xl, xu) # indices
|
||||
fg = freq[xg] # [Hz] corresponding freq
|
||||
gs = np.sqrt( 1/ ((1+((fg/fc - fc/fg)*(1.507*Noct))**6)) ) # raw windw
|
||||
gs /= np.sum(gs) # normalize: integral=1
|
||||
Q[x, xl:xu] = gs # add to matrix
|
||||
kp = np.arange(kpmin[ff], kpmax[ff]+1) # freqs of window
|
||||
Phi1 = log2((kp - 0.5)/ifreq[ff]) * NoctAct # integr. bounds Hann wind
|
||||
Phi2 = log2((kp + 0.5)/ifreq[ff]) * NoctAct
|
||||
W = intHann(Phi1, Phi2) # smoothing window
|
||||
Q[ff, kpmin[ff]-ifreq[0]:kpmax[ff]-ifreq[0]+1] = W
|
||||
|
||||
# Normalize to conserve input power
|
||||
Qpower = np.sum(Q, axis=0)
|
||||
@ -149,57 +155,40 @@ def smoothCalcMatrix(freq, sw: SmoothingWidth):
|
||||
def smoothSpectralData(freq, M, sw: SmoothingWidth,
|
||||
st: SmoothingType = SmoothingType.levels):
|
||||
"""
|
||||
Apply fractional octave smoothing to magnitude data in frequency domain.
|
||||
Smoothing is performed to power, using a sliding Gaussian window with
|
||||
variable length. The window is truncated after 3x std at either side.
|
||||
|
||||
The implementation is not exact, because f is linearly spaced and
|
||||
fractional octave smoothing is related to log spaced data. In this
|
||||
implementation, the window extends with a fixed frequency step to either
|
||||
side. The deviation is largest when Noct is small (e.g. coarse smoothing).
|
||||
07-05-2021
|
||||
|
||||
Update 16-01-2023: speed up algorithm
|
||||
- Smoothing is performed using matrix multiplication
|
||||
- The smoothing matrix is not calculated if it already exists
|
||||
Apply fractional octave smoothing to data in the frequency domain.
|
||||
|
||||
Args:
|
||||
freq: array of frequencies of data points [Hz] - equally spaced
|
||||
M: array of either power, transfer functin or dB points. Depending on
|
||||
M: array of data, either power or dB
|
||||
the smoothing type `st`, the smoothing is applied.
|
||||
sw: smoothing width
|
||||
st: smoothing type = data type of input data
|
||||
|
||||
Returns:
|
||||
freq : array frequencies of data points [Hz]
|
||||
Msm : float smoothed magnitude of data points
|
||||
|
||||
"""
|
||||
# TODO: Make this function multi-dimensional array aware.
|
||||
|
||||
# Safety
|
||||
MM = copy.deepcopy(M)
|
||||
Noct = sw.value[0]
|
||||
assert len(M) > 0, "Smoothing function: input array is empty" # not sure if this works
|
||||
assert len(MM) > 0, "Smoothing function: input array is empty" # not sure if this works
|
||||
assert Noct > 0, "'Noct' must be absolute positive"
|
||||
if Noct < 1:
|
||||
raise Warning('Check if \'Noct\' is entered correctly')
|
||||
assert len(freq) == len(M), 'f and M should have equal length'
|
||||
assert len(freq) == len(MM), "f and M should have equal length"
|
||||
|
||||
# if st == SmoothingType.ps:
|
||||
# assert np.min(M) >= 0, 'absolute magnitude M cannot be negative'
|
||||
if st == SmoothingType.levels and isinstance(M.dtype, complex):
|
||||
if st == SmoothingType.ps:
|
||||
assert np.min(MM) >= 0, 'Power spectrum values cannot be negative'
|
||||
if st == SmoothingType.levels and isinstance(MM.dtype, complex):
|
||||
raise RuntimeError('Decibel input should be real-valued')
|
||||
|
||||
# Initialize
|
||||
L = M.shape[0] # number of data points
|
||||
|
||||
# Convert to power
|
||||
if st == SmoothingType.levels:
|
||||
P = 10**(MM/10) # magnitude [dB] --> power
|
||||
P = 10**(MM/10)
|
||||
elif st == SmoothingType.ps:
|
||||
P = MM
|
||||
else:
|
||||
P = MM # data already given as power
|
||||
# TODO: This does not work due to complex numbers. Should be split up in
|
||||
# magnitude and phase.
|
||||
# elif st == SmoothingType.tf:
|
||||
# P = P**2
|
||||
raise RuntimeError(f"Incorrect SmoothingType: {st}")
|
||||
|
||||
# P is power while smoothing. x are indices of P.
|
||||
Psm = np.zeros_like(P) # Smoothed power - to be calculated
|
||||
@ -225,6 +214,7 @@ def smoothSpectralData(freq, M, sw: SmoothingWidth,
|
||||
# Apply smoothing
|
||||
Psm = np.matmul(Q, P)
|
||||
|
||||
# Convert to original format
|
||||
if st == SmoothingType.levels:
|
||||
Psm = 10*np.log10(Psm)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user