Compare commits

...

2 Commits

2 changed files with 141 additions and 12 deletions

View File

@ -67,7 +67,7 @@ endif(LASP_FLOAT STREQUAL "double")
# ##################### END Cmake variables converted to a macro
set(Python_ADDITIONAL_VERSIONS "3.8 3.9")
set(Python_ADDITIONAL_VERSIONS "3.8")
# #################### Setting definitions and debug-specific compilation flags
# General make flags

View File

@ -5,11 +5,29 @@ Author: J.A. de Jong - ASCEE V.O.F.
Description: Filter design implementation of common biquad filters that are
often used in parametric equalizers.
Major source is Audio EQ Cookbook:
https://archive.is/20121220231853/http://www.musicdsp.org/
files/Audio-EQ-Cookbook.txt
The definition of the BiQuad filter coefficients as coming out of these
functions defines the filter as:
y[n] = 1/ba[3] * ( ba[0] * x[n] + ba[1] * x[n-1] + ba[2] * x[n-2] +
+ ba[4] * y[n-1] + ba[5] * y[n-2]
)
*Note that all filters are normalized such that ba[3] is by definition equal to
1.0!*
"""
__all__ = ['peaking', 'biquadTF']
from scipy.signal import bilinear_zpk, zpk2sos, freqz_zpk, sosfreqz
__all__ = ['peaking', 'biquadTF', 'notch', 'lowpass', 'highpass',
'highshelve', 'lowshelve']
from scipy.signal import sosfreqz
from scipy.interpolate import interp1d
import numpy as np
from numpy import sin, cos, sqrt, pi, array
def peaking(fs, f0, Q, gain):
"""
@ -19,25 +37,136 @@ def peaking(fs, f0, Q, gain):
fs: Sampling frequency [Hz]
f0: Center frequency
Q: Quality factor (~ inverse of bandwidth)
gain: Increase in level at the center frequency
gain: Increase in level at the center frequency [dB]
"""
A = np.sqrt(10**(gain/20))
omg0 = 2*np.pi*f0/fs
alpha = np.sin(omg0)/Q/2
A = sqrt(10**(gain/20))
omg0 = 2*pi*f0/fs
alpha = sin(omg0)/Q/2
b0 = 1+alpha*A
b1 = -2*np.cos(omg0)
b1 = -2*cos(omg0)
b2 = 1-alpha*A
a0 = 1 + alpha/A
a1 = -2*np.cos(omg0)
a1 = -2*cos(omg0)
a2 = 1-alpha/A
return np.array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
def notch(fs, f0, Q):
"""
Notch filter
Args:
fs: Sampling frequency [Hz]
f0: Center frequency [Hz]
Q: Quality factor (~ inverse of bandwidth)
"""
omg0 = 2*pi*f0/fs
alpha = sin(omg0)/Q/2
b0 = 1
b1 = -2*cos(omg0)
b2 = 1
a0 = 1 + alpha
a1 = -2*cos(omg0)
a2 = 1 - alpha
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
def lowpass(fs, f0, Q):
"""
Second order low pass filter
Args:
fs: Sampling frequency [Hz]
f0: Cut-off frequency [Hz]
Q: Quality factor (~ inverse of bandwidth)
"""
w0 = 2*pi*f0/fs
alpha = sin(w0)/Q/2
b0 = (1 - cos(w0))/2
b1 = 1 - cos(w0)
b2 = (1 - cos(w0))/2
a0 = 1 + alpha
a1 = -2*cos(w0)
a2 = 1 - alpha
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
def highpass(fs, f0, Q):
"""
Second order high pass filter
Args:
fs: Sampling frequency [Hz]
f0: Cut-on frequency [Hz]
Q: Quality factor (~ inverse of bandwidth)
"""
w0 = 2*pi*f0/fs
alpha = sin(w0)/Q/2
b0 = (1 + cos(w0))/2
b1 = -(1 + cos(w0))
b2 = (1 + cos(w0))/2
a0 = 1 + alpha
a1 = -2*cos(w0)
a2 = 1 - alpha
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
def highshelve(fs, f0, Q, gain):
"""
High shelving filter
Args:
fs: Sampling frequency [Hz]
f0: Cut-on frequency [Hz]
Q: Quality factor (~ inverse of bandwidth)
gain: Increase in level w.r.t. "wire" [dB]
"""
w0 = 2*pi*f0/fs
alpha = sin(w0)/Q/2
A = 10**(gain/40)
b0 = A*( (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha )
b1 = -2*A*( (A-1) + (A+1)*cos(w0) )
b2 = A*( (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha )
a0 = (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha
a1 = 2*( (A-1) - (A+1)*cos(w0) )
a2 = (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
def lowshelve(fs, f0, Q, gain):
"""
Low shelving filter
Args:
fs: Sampling frequency [Hz]
f0: Cut-on frequency [Hz]
Q: Quality factor (~ inverse of bandwidth)
gain: Increase in level w.r.t. "wire" [dB]
"""
w0 = 2*pi*f0/fs
alpha = sin(w0)/Q/2
A = 10**(gain/40)
b0 = A*( (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha )
b1 = 2*A*( (A-1) - (A+1)*cos(w0) )
b2 = A*( (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha )
a0 = (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha
a1 = -2*( (A-1) + (A+1)*cos(w0) )
a2 = (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
def biquadTF(fs, freq, ba):
"""
Computes the transfer function of the biquad.
Interpolates the frequency response to `freq`
Args:
fs: Sampling frequency [Hz]
freq: Frequency array to compute the
ba: Biquad filter coefficients in common form.
TODO: This code is not yet tested
"""
freq2, h = sosfreqz(ba, worN=48000, fs=fs)
freq2, h = sosfreqz(ba, worN=freq, fs=fs)
interpolator = interp1d(freq2, h, kind='quadratic')
return interpolator(freq)