Compare commits
2 Commits
3a894879f0
...
4e9f975aed
Author | SHA1 | Date | |
---|---|---|---|
4e9f975aed | |||
2caccb6b71 |
@ -67,7 +67,7 @@ endif(LASP_FLOAT STREQUAL "double")
|
||||
|
||||
|
||||
# ##################### END Cmake variables converted to a macro
|
||||
set(Python_ADDITIONAL_VERSIONS "3.8 3.9")
|
||||
set(Python_ADDITIONAL_VERSIONS "3.8")
|
||||
# #################### Setting definitions and debug-specific compilation flags
|
||||
|
||||
# General make flags
|
||||
|
@ -5,11 +5,29 @@ Author: J.A. de Jong - ASCEE V.O.F.
|
||||
|
||||
Description: Filter design implementation of common biquad filters that are
|
||||
often used in parametric equalizers.
|
||||
|
||||
Major source is Audio EQ Cookbook:
|
||||
https://archive.is/20121220231853/http://www.musicdsp.org/
|
||||
files/Audio-EQ-Cookbook.txt
|
||||
|
||||
The definition of the BiQuad filter coefficients as coming out of these
|
||||
functions defines the filter as:
|
||||
|
||||
y[n] = 1/ba[3] * ( ba[0] * x[n] + ba[1] * x[n-1] + ba[2] * x[n-2] +
|
||||
+ ba[4] * y[n-1] + ba[5] * y[n-2]
|
||||
)
|
||||
|
||||
*Note that all filters are normalized such that ba[3] is by definition equal to
|
||||
1.0!*
|
||||
|
||||
|
||||
"""
|
||||
__all__ = ['peaking', 'biquadTF']
|
||||
from scipy.signal import bilinear_zpk, zpk2sos, freqz_zpk, sosfreqz
|
||||
__all__ = ['peaking', 'biquadTF', 'notch', 'lowpass', 'highpass',
|
||||
'highshelve', 'lowshelve']
|
||||
|
||||
from scipy.signal import sosfreqz
|
||||
from scipy.interpolate import interp1d
|
||||
import numpy as np
|
||||
from numpy import sin, cos, sqrt, pi, array
|
||||
|
||||
def peaking(fs, f0, Q, gain):
|
||||
"""
|
||||
@ -19,25 +37,136 @@ def peaking(fs, f0, Q, gain):
|
||||
fs: Sampling frequency [Hz]
|
||||
f0: Center frequency
|
||||
Q: Quality factor (~ inverse of bandwidth)
|
||||
gain: Increase in level at the center frequency
|
||||
gain: Increase in level at the center frequency [dB]
|
||||
"""
|
||||
A = np.sqrt(10**(gain/20))
|
||||
omg0 = 2*np.pi*f0/fs
|
||||
alpha = np.sin(omg0)/Q/2
|
||||
A = sqrt(10**(gain/20))
|
||||
omg0 = 2*pi*f0/fs
|
||||
alpha = sin(omg0)/Q/2
|
||||
b0 = 1+alpha*A
|
||||
b1 = -2*np.cos(omg0)
|
||||
b1 = -2*cos(omg0)
|
||||
b2 = 1-alpha*A
|
||||
a0 = 1 + alpha/A
|
||||
a1 = -2*np.cos(omg0)
|
||||
a1 = -2*cos(omg0)
|
||||
a2 = 1-alpha/A
|
||||
|
||||
return np.array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
|
||||
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
|
||||
|
||||
def notch(fs, f0, Q):
|
||||
"""
|
||||
Notch filter
|
||||
|
||||
Args:
|
||||
fs: Sampling frequency [Hz]
|
||||
f0: Center frequency [Hz]
|
||||
Q: Quality factor (~ inverse of bandwidth)
|
||||
"""
|
||||
omg0 = 2*pi*f0/fs
|
||||
alpha = sin(omg0)/Q/2
|
||||
b0 = 1
|
||||
b1 = -2*cos(omg0)
|
||||
b2 = 1
|
||||
a0 = 1 + alpha
|
||||
a1 = -2*cos(omg0)
|
||||
a2 = 1 - alpha
|
||||
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
|
||||
|
||||
def lowpass(fs, f0, Q):
|
||||
"""
|
||||
Second order low pass filter
|
||||
|
||||
Args:
|
||||
fs: Sampling frequency [Hz]
|
||||
f0: Cut-off frequency [Hz]
|
||||
Q: Quality factor (~ inverse of bandwidth)
|
||||
"""
|
||||
w0 = 2*pi*f0/fs
|
||||
alpha = sin(w0)/Q/2
|
||||
b0 = (1 - cos(w0))/2
|
||||
b1 = 1 - cos(w0)
|
||||
b2 = (1 - cos(w0))/2
|
||||
a0 = 1 + alpha
|
||||
a1 = -2*cos(w0)
|
||||
a2 = 1 - alpha
|
||||
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
|
||||
|
||||
def highpass(fs, f0, Q):
|
||||
"""
|
||||
Second order high pass filter
|
||||
|
||||
Args:
|
||||
fs: Sampling frequency [Hz]
|
||||
f0: Cut-on frequency [Hz]
|
||||
Q: Quality factor (~ inverse of bandwidth)
|
||||
"""
|
||||
w0 = 2*pi*f0/fs
|
||||
alpha = sin(w0)/Q/2
|
||||
|
||||
b0 = (1 + cos(w0))/2
|
||||
b1 = -(1 + cos(w0))
|
||||
b2 = (1 + cos(w0))/2
|
||||
a0 = 1 + alpha
|
||||
a1 = -2*cos(w0)
|
||||
a2 = 1 - alpha
|
||||
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
|
||||
|
||||
|
||||
def highshelve(fs, f0, Q, gain):
|
||||
"""
|
||||
High shelving filter
|
||||
|
||||
Args:
|
||||
fs: Sampling frequency [Hz]
|
||||
f0: Cut-on frequency [Hz]
|
||||
Q: Quality factor (~ inverse of bandwidth)
|
||||
gain: Increase in level w.r.t. "wire" [dB]
|
||||
"""
|
||||
w0 = 2*pi*f0/fs
|
||||
alpha = sin(w0)/Q/2
|
||||
A = 10**(gain/40)
|
||||
b0 = A*( (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha )
|
||||
b1 = -2*A*( (A-1) + (A+1)*cos(w0) )
|
||||
b2 = A*( (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha )
|
||||
a0 = (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha
|
||||
a1 = 2*( (A-1) - (A+1)*cos(w0) )
|
||||
a2 = (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha
|
||||
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
|
||||
|
||||
def lowshelve(fs, f0, Q, gain):
|
||||
"""
|
||||
Low shelving filter
|
||||
|
||||
Args:
|
||||
fs: Sampling frequency [Hz]
|
||||
f0: Cut-on frequency [Hz]
|
||||
Q: Quality factor (~ inverse of bandwidth)
|
||||
gain: Increase in level w.r.t. "wire" [dB]
|
||||
"""
|
||||
w0 = 2*pi*f0/fs
|
||||
alpha = sin(w0)/Q/2
|
||||
A = 10**(gain/40)
|
||||
b0 = A*( (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha )
|
||||
b1 = 2*A*( (A-1) - (A+1)*cos(w0) )
|
||||
b2 = A*( (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha )
|
||||
a0 = (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha
|
||||
a1 = -2*( (A-1) + (A+1)*cos(w0) )
|
||||
a2 = (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha
|
||||
return array([b0/a0, b1/a0, b2/a0, a0/a0, a1/a0, a2/a0])
|
||||
|
||||
def biquadTF(fs, freq, ba):
|
||||
"""
|
||||
Computes the transfer function of the biquad.
|
||||
|
||||
Interpolates the frequency response to `freq`
|
||||
|
||||
Args:
|
||||
fs: Sampling frequency [Hz]
|
||||
freq: Frequency array to compute the
|
||||
ba: Biquad filter coefficients in common form.
|
||||
|
||||
TODO: This code is not yet tested
|
||||
"""
|
||||
freq2, h = sosfreqz(ba, worN=48000, fs=fs)
|
||||
freq2, h = sosfreqz(ba, worN=freq, fs=fs)
|
||||
interpolator = interp1d(freq2, h, kind='quadratic')
|
||||
return interpolator(freq)
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user