lasp/python_src/lasp/lasp_reverb.py
J.A. de Jong 41e748c2f5
Some checks failed
Building, testing and releasing LASP if it has a tag / Build-Test-Ubuntu (push) Failing after -4m54s
Building, testing and releasing LASP if it has a tag / Release-Ubuntu (push) Has been skipped
Made code to compile and probably work with 32-bits floating point. This requires quite some testing to be done
2024-06-03 17:28:51 +02:00

85 lines
2.3 KiB
Python

# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Description:
Reverberation time estimation tool using least squares
"""
from .lasp_common import getTime
from .lasp_config import ones
import numpy as np
class ReverbTime:
"""
Tool to estimate the reverberation time
"""
def __init__(self, fs, level, channel=0):
"""
Initialize Reverberation time computer.
Args:
fs: Sampling frequency [Hz]
level: (Optionally weighted) level values as a function of time, in
dB.
channel: Channel index to compute from
"""
assert level.ndim == 2, 'Invalid number of dimensions in level'
self._level = level[:, channel][:, np.newaxis]
# Number of time samples
self._channel = channel
self._N = self._level.shape[0]
self._t = getTime(fs, self._N, 0)
print(f't: {self._t}')
def compute(self, istart, istop):
"""
Compute the reverberation time using a least-squares solver
Args:
istart: Start time index reverberation interval
istop: Stop time index of reverberation interval
Returns:
dictionary with result values, contains:
- istart: start index of reberberation interval
- istop: stop index of reverb. interval
- T60: Reverberation time
- const: Constant value
- derivative: rate of change of the level in dB/s.
"""
points = self._level[istart:istop]
x = self._t[istart:istop][:, np.newaxis]
# Solve the least-squares problem, by creating a matrix of
A = np.hstack([x, ones(x.shape)])
# print(A.shape)
# print(points.shape)
# derivative is dB/s of increase/decrease
sol, residuals, rank, s = np.linalg.lstsq(A, points)
# print(f'sol: {sol}')
# Derivative of the decay in dB/s
derivative = sol[0][0]
# Start level in dB
const = sol[1][0]
# Time to reach a decay of 60 dB (reverb. time)
T60 = -60./derivative
res = {'istart': istart,
'istop': istop,
'const': const,
'derivative': derivative,
'T60': T60}
# print(res)
return res