Added documentation how to calculate transfer matrix from impedance tube measurements

This commit is contained in:
Casper Jansen 2021-08-09 12:55:43 +02:00
parent a25e2e2685
commit 46e3378bd2
5 changed files with 464 additions and 5 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
.ipynb_checkpoints
.spyproject
.pdf

Binary file not shown.

BIN
img/Bruel_Kjaer_fig1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

View File

@ -8269,6 +8269,19 @@ in which
can be 'measured' by averaging it over the port's boundary.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TO DO: redraw image
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
@ -8345,10 +8358,6 @@ Electrical and mechanical model of the speaker
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
@ -10894,7 +10903,7 @@ T_{21} & T_{22}
\end{array}\right]\left\{ \begin{array}{c}
p_{o}\\
Q_{o}
\end{array}\right\} ,
\end{array}\right\} ,\label{eq:transfer_matrix_COMSOL}
\end{equation}
\end_inset
@ -10946,6 +10955,455 @@ LookupModel
.
\end_layout
\begin_layout Chapter
Measuring the transmission matrix using the four microphone method
\end_layout
\begin_layout Standard
Based on Brüel Kjaer - Transmission loss in impedance tube.pdf in /home/anne/next
cloud/wip_redusone/2021-Steegmuller/measurement_setup
\end_layout
\begin_layout Standard
Modifications: volume flow U instead of velocity v; impedance Z instead
of characteristic impedance z; transfer functions Hir instead of cross
correlations (?).
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TO DO:
\end_layout
\begin_layout Plain Layout
draw own image image
\end_layout
\begin_layout Plain Layout
fix citation
\end_layout
\begin_layout Plain Layout
Transfer matrix according to our own definition instead of the definition
of Bruel & Kjaer = definition of COMSOL
\end_layout
\begin_layout Plain Layout
Consistently use Q or U for volume flow? Also in text above about COMSOL.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The transfer matrix of a device can be measured using a four microphone
setup as shown in figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:meas_transmatrix_4mic"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The microphones record acoustic pressure and plane waves are assumed.
In the following equations, time dependency
\begin_inset Formula $\exp(+j*\omega*t)$
\end_inset
is not shown.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename img/Bruel_Kjaer_fig1.png
lyxscale 50
width 80text%
\end_inset
\begin_inset Caption Standard
\begin_layout Plain Layout
Experimental setup to measure the transfer matrix, using the four microphone
method
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "fig:meas_transmatrix_4mic"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The transfer matrix coefficients are calculated based on sound pressure
\begin_inset Formula $p$
\end_inset
and volume velocity
\begin_inset Formula $U$
\end_inset
, as related by equation
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:transfer_matrix_COMSOL"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Note that this definition is different than the definition used in LRFtubes
and therefore
\begin_inset Formula $T$
\end_inset
should be inverted for further use.
Subscrips
\begin_inset Formula $i$
\end_inset
and
\begin_inset Formula $d$
\end_inset
refer to
\begin_inset Formula $x=0$
\end_inset
and
\begin_inset Formula $x=d$
\end_inset
respectively.
There are two equations and four unknowns, so two sets of measurements
are required.
The second set, indicated by superscript
\begin_inset Formula $*$
\end_inset
, must be performed with a different acoustic termination.
Together this results in four equations for four unknowns.
\end_layout
\begin_layout Standard
\align left
\begin_inset Formula
\begin{equation}
\left\{ \begin{array}{c}
p_{i}\\
Q_{i}
\end{array}\begin{array}{c}
p_{i}^{*}\\
Q_{i}^{*}
\end{array}\right\} =\left[\begin{array}{cc}
T_{11} & T_{12}\\
T_{21} & T_{22}
\end{array}\right]\left\{ \begin{array}{c}
p_{o}\\
Q_{o}
\end{array}\begin{array}{c}
p_{o}^{*}\\
Q_{o}^{*}
\end{array}\right\} ,\label{eq:transfer_matrix-double}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Solving for
\begin_inset Formula $T$
\end_inset
yields:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\left[\begin{array}{cc}
T_{11} & T_{12}\\
T_{21} & T_{22}
\end{array}\right]=\frac{1}{p_{d}Q_{d}^{*}-p_{d}^{*}Q_{d}}\left[\begin{array}{cc}
p_{i}Q_{d}^{*}-p_{i}^{*}Q_{d} & -p_{i}p_{d}^{*}+p_{i}^{*}p_{d}\\
Q_{i}Q_{d}^{*}-Q_{i}^{*}Q_{d} & -p_{d}^{*}Q_{i}+p_{d}Q_{i}^{*}
\end{array}\right]
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $p$
\end_inset
and
\begin_inset Formula $Q$
\end_inset
at
\begin_inset Formula $x=0$
\end_inset
and
\begin_inset Formula $x=d$
\end_inset
can be calculated from travelling
\begin_inset Formula $A$
\end_inset
,
\begin_inset Formula $B$
\end_inset
,
\begin_inset Formula $C$
\end_inset
and
\begin_inset Formula $D$
\end_inset
.
The calculation of their second measurement counterparts
\begin_inset Formula $*$
\end_inset
goes analogously and uses
\begin_inset Formula $A^{*}$
\end_inset
,
\begin_inset Formula $B^{*}$
\end_inset
,
\begin_inset Formula $C^{*}$
\end_inset
and
\begin_inset Formula $D^{*}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
p_{i}=A+B
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
Q_{i}=\frac{A-B}{Z_{0}}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
p_{d}=C\cdot e^{-jkd}+D\cdot e^{jkd}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
Q_{d}=\frac{C\cdot e^{-jkd}-D\cdot e^{jkd}}{Z_{0}}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
in which
\begin_inset Formula $Z_{0}=\frac{z_{0}}{S}$
\end_inset
is the impedance of an infinite duct, with
\begin_inset Formula $z_{0}$
\end_inset
the characteristic impedance and
\begin_inset Formula $S$
\end_inset
the cross-sectional area,
\begin_inset Formula $j=\sqrt{-1}$
\end_inset
,
\begin_inset Formula $k$
\end_inset
the wavenumber.
Travelling waves
\begin_inset Formula $A$
\end_inset
,
\begin_inset Formula $B$
\end_inset
,
\begin_inset Formula $C$
\end_inset
and
\begin_inset Formula $D$
\end_inset
can be calculated from transfer functions
\begin_inset Formula $H_{ir}$
\end_inset
from reference signal
\begin_inset Formula $r$
\end_inset
, as sent to the loudspeaker, to the recorded signal of microphone
\begin_inset Formula $i$
\end_inset
.
The calculation of their second measurement counterparts
\begin_inset Formula $*$
\end_inset
goes analogously and uses
\begin_inset Formula $H_{ir}^{*}$
\end_inset
.
\begin_inset Formula
\begin{equation}
A=\frac{j\left(H_{1r}\cdot e^{jkx_{2}}-H_{2r}\cdot e^{jkx_{1}}\right)}{2\sin\left(k\left(x_{1}-x_{2}\right)\right)}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
B=\frac{j\left(H_{2r}\cdot e^{-jkx_{1}}-H_{1r}\cdot e^{-jkx_{2}}\right)}{2\sin\left(k\left(x_{1}-x_{2}\right)\right)}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
C=\frac{j\left(H_{3r}\cdot e^{jkx_{4}}-H_{4r}\cdot e^{jkx_{3}}\right)}{2\sin\left(k\left(x_{3}-x_{4}\right)\right)}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
D=\frac{j\left(H_{4r}\cdot e^{-jkx_{3}}-H_{3r}\cdot e^{-jkx_{4}}\right)}{2\sin\left(k\left(x_{3}-x_{4}\right)\right)}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula $\sqrt{G_{rr}}$
\end_inset
has been removed from the equations because Caspers thinks that
\begin_inset Formula $H_{ir}$
\end_inset
refers to the cross spectrum instead of the transfer function.
If the transfer function is used, then
\begin_inset Formula $\sqrt{G_{rr}}$
\end_inset
shall be left out.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Note: if no reference signal has been recorded, the reference signal can
be set to the signal captured by microphone 1.
The equations have no way to figure out whether the loudspeaker really
was driven by such a signal.
Then a requirement is that all microphones are recorded simultaneously
and with synchronized ADC clocks.
\end_layout
\begin_layout Chapter
IEC Coupler impedances
\end_layout

Binary file not shown.