Added description of boundary condition: incident plane wave on port in infinite wall.
This commit is contained in:
parent
e73380e802
commit
a25e2e2685
1
archive/lrftubes_doc_2021-03-31.pdf
Symbolic link
1
archive/lrftubes_doc_2021-03-31.pdf
Symbolic link
@ -0,0 +1 @@
|
||||
lrftubes_doc_820663a.pdf
|
@ -1 +0,0 @@
|
||||
lrftubes_doc_820663a.pdf
|
BIN
archive/lrftubes_doc_latest.pdf
Normal file
BIN
archive/lrftubes_doc_latest.pdf
Normal file
Binary file not shown.
BIN
img/bc_planewave_port.jpg
Executable file
BIN
img/bc_planewave_port.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 3.6 MiB |
434
lrftubes.lyx
434
lrftubes.lyx
@ -1570,6 +1570,12 @@ To model absorption of sound, a one-dimensional porous material model should
|
||||
This work has been postponed to a later stage.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Prismatic and spherical ducts filled with porous material are defined in
|
||||
dbmduct.py.
|
||||
These use the Delaney-Bazley-Miki model.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Overview of this documentation
|
||||
\end_layout
|
||||
@ -7075,7 +7081,7 @@ A membrane is a mechanical
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Hole
|
||||
Holes in plate
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -7083,16 +7089,73 @@ series_impedance.py/class CircHoleNeck(SeriesImpedance)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Behaves like an acoustic mass with losses.
|
||||
It represents holes in sheet material, which can form the neck of a Helmholtz
|
||||
resonator.
|
||||
Hole-hole interaction is neglected.
|
||||
The resistance term is an approximation.
|
||||
A plate with several holes can be modelled using CircHoleNeck.
|
||||
It behaves like an acoustic mass with losses and can represent the neck
|
||||
of a Helmholtz resonator.
|
||||
Typical uses are to connect volumes to eachother or volumes to ducts, to
|
||||
form Helmholtz resonators.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Usable for connecting volumes to eachother or volumes to ducts, to form
|
||||
Helmholtz resonators.
|
||||
Limitations are that hole-hole interaction is neglected and that the resistance
|
||||
term is an approximation for holes with diameter >> length.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Impedance is given by the equation:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\noindent
|
||||
\align center
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
Z_{holes}=\frac{1}{N_{h}}\left(R_{v}+i\omega M_{A}\right)
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $N_{h}$
|
||||
\end_inset
|
||||
|
||||
is the number of holes,
|
||||
\begin_inset Formula $R_{v}$
|
||||
\end_inset
|
||||
|
||||
the acoustic resistance as described in equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:Rv_hole"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
the angular frequency and
|
||||
\begin_inset Formula $m_{a}$
|
||||
\end_inset
|
||||
|
||||
the acoustic mass as described in equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:acoustic_mass"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, except without Karal's discontinuity factor.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
@ -7278,7 +7341,7 @@ literal "true"
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
M_{A}=\chi(\alpha,k)\frac{8\rho_{0}}{3\pi^{2}a_{L}},
|
||||
M_{A}=\chi(\alpha,k)\frac{8\rho_{0}}{3\pi^{2}a_{L}},\label{eq:acoustic_mass}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -7904,12 +7967,347 @@ Filling this in, we obtain the following low-frequency approximation to
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
Z_{\mathrm{rad}}=\frac{z_{0}}{S}\left[i\frac{8ka}{3\pi}+\frac{1}{2}\left(ka\right)^{2}+\mathcal{O}\left(\left(ka\right)^{3}\right)\right]
|
||||
Z_{\mathrm{rad}}=\frac{z_{0}}{S}\left[i\frac{8ka}{3\pi}+\frac{1}{2}\left(ka\right)^{2}+\mathcal{O}\left(\left(ka\right)^{3}\right)\right]\label{eq:Zrad-baffled-piston}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Incident plane wave on small port in infinite baffle
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Situation: an acoustic system, which is connected to the outside world though
|
||||
a port, ending in an infinite wall
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:bc_planewave_port"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
There is an incident plane wave with specified amplitude and frequency.
|
||||
It would be beneficial for computing time to replace the outside world
|
||||
by a boundary condition on the port.
|
||||
Here it is approached as a scattering problem.
|
||||
More information is described in 'Sound absorbing materials' (1949) Zwikker
|
||||
et al., pp.
|
||||
132-134.
|
||||
The pressure field can be written as:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{t}=p_{i}+p_{s}\label{eq:scattering-problem}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $p_{t}$
|
||||
\end_inset
|
||||
|
||||
is the total pressure field,
|
||||
\begin_inset Formula $p_{i}$
|
||||
\end_inset
|
||||
|
||||
the incident pressure field and
|
||||
\begin_inset Formula $p_{s}$
|
||||
\end_inset
|
||||
|
||||
the scattered pressure field.
|
||||
All depend on both position and time.
|
||||
If only the infinite wall is taken into account and the port and system
|
||||
behind it are ignored, the amplitude of the incident plane wave and its
|
||||
reflection can be described as:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{i}(x,t)=\begin{cases}
|
||||
P_{i}\cdot\cos(kx) & x<0\\
|
||||
undefined & x=0\\
|
||||
0 & x>0
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $P_{i}$
|
||||
\end_inset
|
||||
|
||||
is half the amplitude of the incident plane wave (resulting in sound pressure
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $P_{i}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\xout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
on the surface of a reflecting wall),
|
||||
\begin_inset Formula $k$
|
||||
\end_inset
|
||||
|
||||
is the wavenumber and
|
||||
\begin_inset Formula $x$
|
||||
\end_inset
|
||||
|
||||
the position into the wall.
|
||||
There is no scattered pressure field, so this is the total pressure field
|
||||
right away.
|
||||
When the port and system behind it are added, the total pressure field
|
||||
no longer is equal to the incident pressure field: a correction must be
|
||||
added, which is captured in
|
||||
\begin_inset Formula $p_{s}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The correction is due to the air slug within the port moving.
|
||||
At
|
||||
\begin_inset Formula $x<0$
|
||||
\end_inset
|
||||
|
||||
, this has the same effect als a baffled piston.
|
||||
On the condition that the wavelength is much larger than the port size,
|
||||
the scattered field near the boundary (but still outside of the port) is
|
||||
given by:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{s}(x=0^{-})=-Z_{rad}U
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $Z_{rad}$
|
||||
\end_inset
|
||||
|
||||
is the radiation impedance of a baffled piston and
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
is the acoustic volume flow rate.
|
||||
Note the minus sign, which stems from the direction in which
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
is defined.
|
||||
The same convention is taken as in COMSOL: velocity
|
||||
\begin_inset Formula $v$
|
||||
\end_inset
|
||||
|
||||
is positive when inwards, so inwards
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
is positive.
|
||||
Filling in equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:scattering-problem"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, just outside of the port at
|
||||
\begin_inset Formula $x=0^{-}$
|
||||
\end_inset
|
||||
|
||||
, yields:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{t}(x=0^{-})=P_{i}-Z_{rad}U
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
It is questionable whether the port acoustically ends at the boundary, so
|
||||
this might be an approximation.
|
||||
In COMSOL, the pressure is continuous, to it is fine to apply it at
|
||||
\begin_inset Formula $x=0$
|
||||
\end_inset
|
||||
|
||||
instead of
|
||||
\begin_inset Formula $x=0^{-}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
can be found by integrating the inner product of velocity and the normal
|
||||
vector over the boundary, while adding a minus sign because the normal
|
||||
vector points outwards.
|
||||
In COMSOL it is more convenient to use
|
||||
\emph on
|
||||
specific
|
||||
\emph default
|
||||
impedances and
|
||||
\emph on
|
||||
velocities
|
||||
\emph default
|
||||
.
|
||||
Then the equation is slightly modified to:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{t}(x=0)=P_{i}-z_{rad}v\label{eq:bc-planewave-port-pressure}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $z_{rad}$
|
||||
\end_inset
|
||||
|
||||
is the specific radiation impedance of a baffled piston and
|
||||
\begin_inset Formula $v$
|
||||
\end_inset
|
||||
|
||||
the acoustic velocity (inwards).
|
||||
This equation can be applied as a
|
||||
\emph on
|
||||
pressure
|
||||
\emph default
|
||||
boundary condition in COMSOL.
|
||||
The required
|
||||
\begin_inset Formula $v$
|
||||
\end_inset
|
||||
|
||||
can be 'measured' by averaging the normal component of the velocity and
|
||||
adding a minus sign to make it inwards.
|
||||
Alternatively, the equation can be solved for
|
||||
\begin_inset Formula $v$
|
||||
\end_inset
|
||||
|
||||
to obtain a
|
||||
\emph on
|
||||
velocity
|
||||
\emph default
|
||||
boundary condition:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
v=\frac{P_{i}-p_{t}(x=0)}{z_{rad}}\label{eq:bc-planewave-port-velocity}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $p_{t}(x=0)$
|
||||
\end_inset
|
||||
|
||||
can be 'measured' by averaging it over the port's boundary.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename img/bc_planewave_port.jpg
|
||||
lyxscale 10
|
||||
width 50text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Schematic view of incident wave (green) on an infinite wall (blue) containing
|
||||
a port with a system connected to it.
|
||||
The location of the boundary condition is shown in red.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:bc_planewave_port"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Chapter
|
||||
@ -8542,7 +8940,7 @@ Z_{h}=\left(\frac{\rho_{0}z_{0}}{i\omega V}+R_{v}+i\omega m_{\mathrm{neck}}\righ
|
||||
where
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
m_{\mathrm{neck}}=\frac{\rho_{0}\ell_{\mathrm{eff},\mathrm{neck}}}{S_{\mathrm{neck}}},
|
||||
m_{\mathrm{neck}}=\frac{\rho_{0}\ell_{\mathrm{eff},\mathrm{neck}}}{S_{\mathrm{neck}}},\label{eq:acoustic_mass_neck}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -9580,18 +9978,6 @@ For circular large holes with diameter
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For circular large holes with diameter
|
||||
\begin_inset Formula $D$
|
||||
\end_inset
|
||||
|
||||
, the end correction for both sides is
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
2\delta=\frac{8}{3\pi}D\approx0.85D.
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Here we use a more advanced model, which includes the shear wave number.
|
||||
For unrounded edges and a perforate thickness of
|
||||
\begin_inset Formula $t_{p}$
|
||||
@ -10388,7 +10774,7 @@ Z_{\mathrm{hole}}=i\omega\rho_{0}\frac{4}{\pi D^{2}}\left[\frac{t_{w}}{\left(1-f
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\Re[z_{\mathrm{hole}}]=\frac{2D\delta_{\nu}\omega\rho_{0}t_{w}}{\left(4\delta_{\nu}^{2}+\left(D-2\delta_{\nu}\right)^{2}\right)},
|
||||
\Re[z_{\mathrm{hole}}]=\frac{2D\delta_{\nu}\omega\rho_{0}t_{w}}{\left(4\delta_{\nu}^{2}+\left(D-2\delta_{\nu}\right)^{2}\right)},\label{eq:Rv_hole}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
BIN
lrftubes.pdf
Normal file
BIN
lrftubes.pdf
Normal file
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user