Added eq:kappa and renamed indices of eq:Phi(_mn)

This commit is contained in:
Casper Jansen 2021-05-25 10:58:02 +02:00
parent 20b60eda7d
commit e73380e802
1 changed files with 94 additions and 14 deletions

View File

@ -2343,8 +2343,8 @@ Dynamic viscosity of a gas mixture
\end_layout
\begin_layout Standard
The dynamic viscosity of a gas mixture can be derived from the dynamic viscosity
of pure gases as
The dynamic viscosity of a gas mixture can be derived from the dynamic viscositi
es of pure gases as
\begin_inset CommandInset citation
LatexCommand cite
after "p. 27"
@ -2356,42 +2356,42 @@ literal "false"
:
\begin_inset Formula
\begin{equation}
\mu_{\mathrm{mix}}=\sum_{n=0}^{N-1}\frac{x_{n}\mu_{n}}{\sum_{m=0}^{N-1}\Phi_{nm}x_{m}},\label{eq:mumix}
\mu_{\mathrm{mix}}=\sum_{α=0}^{N-1}\frac{x_{α}\mu_{α}}{\sum_{β=0}^{N-1}\Phi_{αβ}x_{β}},\label{eq:mumix}
\end{equation}
\end_inset
where
\begin_inset Formula $\mu_{n}$
\begin_inset Formula $\mu_{α}$
\end_inset
denotes the pure substance dynamic viscosity of species
\begin_inset Formula $n$
is the dynamic viscosity of pure chemical species
\begin_inset Formula $α$
\end_inset
, and
\begin_inset Formula $x_{n}$
and
\begin_inset Formula $x_{α}$
\end_inset
denotes its mole fraction in the mixture.
\begin_inset Formula $\Phi_{mn}$
\begin_inset Formula $\Phi_{αβ}$
\end_inset
is defined as:
\begin_inset Formula
\begin{equation}
\Phi_{mn}=\frac{1}{\sqrt{8}}\left(1+\frac{M_{n}}{M_{m}}\right)^{-1/2}\left[1+\left(\frac{\mu_{n}}{\mu_{m}}\right)^{1/2}\left(\frac{M_{m}}{M_{n}}\right)^{1/4}\right]^{2},
\Phi_{αβ}=\frac{1}{\sqrt{8}}\left(1+\frac{M_{α}}{M_{β}}\right)^{-1/2}\left[1+\left(\frac{\mu_{α}}{\mu_{β}}\right)^{1/2}\left(\frac{M_{β}}{M_{α}}\right)^{1/4}\right]^{2},\label{eq:Phi_mn}
\end{equation}
\end_inset
where
\begin_inset Formula $M_{i}$
\begin_inset Formula $M_{α}$
\end_inset
is the molar mass of species
\begin_inset Formula $i$
\begin_inset Formula $α$
\end_inset
.
@ -2407,7 +2407,7 @@ reference "eq:mumix"
\end_inset
can efficiently be solved by noting that
\begin_inset Formula $d_{n}=\sum_{m=0}^{N-1}\Phi_{nm}x_{m}$
\begin_inset Formula $d_{α}=\sum_{β=0}^{N-1}\Phi_{αβ}x_{β}$
\end_inset
is a matrix-vector product, which can be written as
@ -2417,6 +2417,65 @@ reference "eq:mumix"
.
\end_layout
\begin_layout Subsubsection
Thermal conductivity of a gas mixture
\end_layout
\begin_layout Standard
The thermal conductivity of a gas mixture can be derived from the thermal
conductivities of pure gases as
\begin_inset CommandInset citation
LatexCommand cite
after "p. 276"
key "bird_transport_2007"
literal "false"
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
k_{mix}=\sum_{α=0}^{N-1}\frac{x_{α}k_{α}}{\sum_{β=0}^{N-1}\Phi_{αβ}x_{β}}\label{eq:kappamix}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
where
\begin_inset Formula $k_{α}$
\end_inset
is the thermal conductivity of pure chemical species
\begin_inset Formula $α$
\end_inset
and
\begin_inset Formula $x_{α}$
\end_inset
denotes its mole fraction in the mixture and
\begin_inset Formula $\Phi_{αβ}$
\end_inset
is identical to that appearing in the viscosity equation, see
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Phi_mn"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Subsection
Combustion
\end_layout
@ -7015,6 +7074,27 @@ Membrane
A membrane is a mechanical
\end_layout
\begin_layout Section
Hole
\end_layout
\begin_layout Standard
series_impedance.py/class CircHoleNeck(SeriesImpedance)
\end_layout
\begin_layout Standard
Behaves like an acoustic mass with losses.
It represents holes in sheet material, which can form the neck of a Helmholtz
resonator.
Hole-hole interaction is neglected.
The resistance term is an approximation.
\end_layout
\begin_layout Standard
Usable for connecting volumes to eachother or volumes to ducts, to form
Helmholtz resonators.
\end_layout
\begin_layout Section
End corrections and discontinuities
\begin_inset CommandInset label
@ -9606,7 +9686,7 @@ n
\end_layout
\begin_layout Standard
The coarse 0impedance of a Helmholtz resonator repeated here:
The coarse impedance of a Helmholtz resonator repeated here:
\begin_inset Formula
\begin{equation}
Z(\omega)=\underbrace{i\omega m_{A}+R_{v}}_{Z_{h}}+\frac{\rho_{0}c_{0}^{2}}{i\omega V},