Added quadrupole, some minor changes
This commit is contained in:
parent
a25e2e2685
commit
aff2c12569
BIN
img/quadrupole.pdf
Normal file
BIN
img/quadrupole.pdf
Normal file
Binary file not shown.
558
lrftubes.lyx
558
lrftubes.lyx
@ -2444,7 +2444,7 @@ literal "false"
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
k_{mix}=\sum_{α=0}^{N-1}\frac{x_{α}k_{α}}{\sum_{β=0}^{N-1}\Phi_{αβ}x_{β}}\label{eq:kappamix}
|
||||
k_{\mathrm{mix}}=\sum_{α=0}^{N-1}\frac{x_{α}k_{α}}{\sum_{β=0}^{N-1}\Phi_{αβ}x_{β}}\label{eq:kappamix}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -8699,7 +8699,7 @@ where
|
||||
\begin_layout Standard
|
||||
After some algebraic manipulations we find:
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $z_{m}u=\left(p_{l}-p_{r}\right)S+B\ell I$
|
||||
@ -8721,6 +8721,30 @@ where
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Units of
|
||||
\begin_inset Formula $\left[B\ell\right]=\frac{N}{A}=\frac{\mathrm{kg}\mathrm{m}s}{\mathrm{s}^{2}C}$
|
||||
\end_inset
|
||||
|
||||
, knowing that
|
||||
\begin_inset Formula $V=\frac{J}{C}$
|
||||
\end_inset
|
||||
|
||||
, we can write this as:
|
||||
\begin_inset Formula $\frac{\mathrm{kg}\mathrm{m}s}{\mathrm{s}^{2}C}=\frac{V\mathrm{kg}\mathrm{m}s}{\mathrm{s}^{2}J}=\frac{Vs}{\mathrm{m}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
And
|
||||
\begin_inset Formula $\left[\frac{B\ell^{2}}{Z_{\mathrm{el}}}\right]=\left[\frac{Vs}{\mathrm{m}}\frac{N}{A}\frac{A}{V}\right]=\left[\frac{s}{\mathrm{m}}\frac{N}{A}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
@ -8728,7 +8752,14 @@ Results in:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)u=\left(p_{l}-p_{r}\right)S+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$
|
||||
\begin_inset Formula $z_{m}u=\left(p_{l}-p_{r}\right)S+B\ell\frac{V_{\mathrm{in}}-V_{\mathrm{bemf}}}{Z_{\mathrm{el}}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\frac{B\ell^{2}u}{Z_{\mathrm{el}}}+z_{m}u=\left(p_{l}-p_{r}\right)S+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
@ -10979,7 +11010,402 @@ Z_{\mathrm{tr}}=\frac{p_{\mathrm{DRP}}}{U_{\mathrm{coupler,entrance}}}
|
||||
\end_layout
|
||||
|
||||
\begin_layout Chapter
|
||||
Kampinga's SLNS model in our notation
|
||||
Standard acoustic solutions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Spherically symmetric breathing ball (monopole)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
From Rienstra and Hirschberg:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r)=-z_{0}c_{0}k\frac{\hat{v}}{i\omega}\frac{k^{2}a_{0}^{2}}{1+ika_{0}}\frac{\exp\left(-i\left(kr-a_{0}\right)\right)}{kr}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
To our definitions and a bit of rewriting:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\hat{p}(r)=\frac{i\rho_{0}c_{0}ka^{2}}{1+ika}\frac{\exp\left(-i\left(kr-a\right)\right)}{r}\hat{v}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Radiation from a compact monopole with radius
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
breathing
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
velocity amplitude
|
||||
\begin_inset Formula $\hat{v}$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r)=\frac{iz_{0}ka^{2}}{1+ika}\frac{\exp\left(-i\left(kr-a\right)\right)}{r}\hat{v}.
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Small source limit (
|
||||
\begin_inset Formula $ka\ll1$
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r)\approx iz_{0}\frac{ka^{2}}{r}\left[\exp\left(-i\left(kr-a\right)\right)\right]\hat{v}.
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
In terms of the transfer impedance (
|
||||
\begin_inset Formula $\hat{U}=4\pi a^{2}\hat{v}$
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\hat{p}(r)=\frac{i\rho_{0}c_{0}ka^{2}}{1+ika}\frac{\exp\left(-i\left(kr-a\right)\right)}{r}\frac{\hat{U}}{4\pi a^{2}}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\hat{p}(r)=\frac{iz_{0}k}{4\pi\left(1+ika\right)r}\left[\exp\left(-i\left(kr-a\right)\right)\right]\hat{U}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
which is also:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\hat{p}(r)\approx\frac{iz_{0}}{2\lambda r}\left[\exp\left(-i\left(kr-a\right)\right)\right]\hat{U}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r)=\underbrace{\frac{iz_{0}k}{4\pi\left(1+ika\right)r}\left[\exp\left(-i\left(kr-a\right)\right)\right]}_{Z_{\mathrm{tr}}(r)}\hat{U},
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
For easy estimations, in the small source (
|
||||
\begin_inset Formula $ka\ll1$
|
||||
\end_inset
|
||||
|
||||
) and far field limit (
|
||||
\begin_inset Formula $kr\gg1$
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r)\approx\frac{iz_{0}}{2\lambda r}\hat{U}\left[\exp\left(-ikr\right)\right].
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Dipoles
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Translating sphere, exact solution
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula $\theta$
|
||||
\end_inset
|
||||
|
||||
: pole angle.
|
||||
Then the velocity follows:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{v}(\theta)=\hat{v}_{0}\cos\left(\theta\right).
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
After performing analysis, we find for the pressure:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r,\theta)=\frac{-i\omega\rho_{0}\hat{v}_{0}a^{3}\cos\theta}{2\left(1+ika\right)-\left(ka\right)^{2}}\frac{\partial}{\partial r}\left\{ \frac{\exp\left(-ik\left(r-a\right)\right)}{r}\right\} .
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
In the small source limit (
|
||||
\begin_inset Formula $ka\ll1$
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\hat{p}(r,\theta)=-\hat{v}_{0}\frac{z_{0}k^{2}a^{3}\cos\theta}{2r}\left(1+\frac{1}{ikr}\right)e^{-ik\left(r-a\right)}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r,\theta)\approx-\frac{z_{0}k^{2}a^{3}\cos\theta}{2r}\left(\frac{1+ikr}{ikr}\right)\left[\exp\left(-ik\left(r-a\right)\right)\right]\hat{v}_{0}.\label{eq:dipole_transl_sphere}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Small source limit, far field (
|
||||
\begin_inset Formula $ka\ll1$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $kr\gg1$
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r,\theta)\approx-\hat{v}_{0}\frac{z_{0}k^{2}a^{3}\cos\theta}{2r}e^{-ikr}.
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Perfect dipole from two compact monopoles
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Distance between sources:
|
||||
\begin_inset Formula $d\ll\lambda$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Volume flow from a single pole:
|
||||
\begin_inset Formula $\hat{U}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
From the other source
|
||||
\begin_inset Formula $-\hat{U}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The angle
|
||||
\begin_inset Formula $\theta$
|
||||
\end_inset
|
||||
|
||||
is 0 at positions where the positive source is the closest to the listening
|
||||
point.
|
||||
Distance between the sources is
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Then the sound pressure is
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(r,\theta)\approx-k^{2}z_{0}\frac{\exp\left(-ikr\right)\cos\theta}{4\pi r}\left(\frac{1+ikr}{ikr}\right)\hat{U}d
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Comparing this equation to Eq.
|
||||
\begin_inset space ~
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:dipole_transl_sphere"
|
||||
|
||||
\end_inset
|
||||
|
||||
, we find that for the same acoustic pressure of a perfect dipole vs.
|
||||
a translating sphere:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
2\pi a^{2}\hat{v}_{0}a=\hat{U}d.
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
So if we set the volume flow of a translating sphere equal to the frontal
|
||||
area of
|
||||
\begin_inset Formula $\pi a^{2}$
|
||||
\end_inset
|
||||
|
||||
, the effective dipole distance is
|
||||
\begin_inset Formula $2a$
|
||||
\end_inset
|
||||
|
||||
, which corresponds to the diameter of the sphere!
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\frac{a^{3}}{2}\hat{v}_{0}=\frac{1}{4\pi}\hat{U}d$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Hence: if we set
|
||||
\begin_inset Formula $\hat{U}_{\mathrm{tr\,sphere}}=\pi a^{2}\hat{v}$
|
||||
\end_inset
|
||||
|
||||
: the effective distance
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
of a translating sphere is:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $2\pi a^{2}\hat{v}_{0}a=\hat{U}d$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Compact quadrupole
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\noindent
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename img/quadrupole.pdf
|
||||
width 60text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Schematic of the quadrupole.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
A compact square-shaped quadrupole with distances of
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
between each pole, distance
|
||||
\begin_inset Formula $kd\ll1$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Volume flow from a single pole:
|
||||
\begin_inset Formula $\hat{U}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\hat{p}(x,y)=-ik^{3}z_{0}\hat{U}d^{2}\frac{xy\exp\left(-ikr\right)}{4\pi r^{3}}\left(1+\frac{3}{ikr}-\frac{3}{\left(kr\right)^{2}}\right).
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Chapter
|
||||
3D (FEM) Models
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -11224,7 +11650,7 @@ From
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Model
|
||||
SLNS model
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -11256,7 +11682,98 @@ The velocity is:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
With boundary conditions:
|
||||
Comsol writes for the effective density:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(-\frac{1}{\rho_{c}}\nabla p\right)=i\omega\boldsymbol{u},
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
such that
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\frac{1}{\rho_{c}}=\frac{1-h_{\nu}}{\rho_{0}},$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\rho_{c}=\frac{\rho_{0}}{1-h_{\nu}},
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
And:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\nabla\cdot\left(-\frac{1}{\rho_{c}}\nabla p_{t}\right)-\frac{\omega^{2}}{c^{2}\rho_{c}}p=Q_{m},
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Filling in:
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\nabla\cdot\left(-\frac{1}{\rho_{c}}\nabla p_{t}\right)-\frac{\omega^{2}}{c^{2}\rho_{c}}p=Q_{m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\nabla\cdot\left(-\frac{\left(1-h_{\nu}\right)}{\rho_{m}}\nabla p\right)-\frac{k^{2}}{\rho_{m}}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p=0$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Makes:
|
||||
\begin_inset Formula $c^{2}\rho_{c}=\frac{c_{m}^{2}\rho_{m}}{1+\left(\gamma-1\right)h_{\kappa}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $c^{2}=\frac{c_{m}^{2}\left(1-h_{\nu}\right)}{1+\left(\gamma-1\right)h_{\kappa}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
c^{2}=\frac{c_{m}^{2}\left(1-h_{\nu}\right)}{1+\left(\gamma-1\right)h_{\kappa}}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
With boundary conditions at isothermal no-slip wall:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -11269,6 +11786,21 @@ h_{\kappa} & =1\qquad\mathrm{at\,the\,wall}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Symmetry / inlet outlet:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
h_{\nu}=h_{\kappa}=0
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -11285,7 +11817,7 @@ For pressure / velocity b.c.'s
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Combine with pressure acoustics:
|
||||
@ -11672,6 +12204,10 @@ We hebben altijd op een rand:
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
We can write this as a weak contribution:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Weak contribution in pressure acoustics interface:
|
||||
\end_layout
|
||||
@ -11684,13 +12220,7 @@ acpr.delta/acpr.rho_c
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
Or we could write this with a custom density and speed of sound <— TODO!
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
Loading…
Reference in New Issue
Block a user