Updated status Anne
This commit is contained in:
parent
daab881884
commit
b743b9da3e
Binary file not shown.
BIN
img/quadrupole_mechel.png
Normal file
BIN
img/quadrupole_mechel.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 7.3 KiB |
BIN
img/two_port_probing.pdf
Normal file
BIN
img/two_port_probing.pdf
Normal file
Binary file not shown.
284
lrftubes.lyx
284
lrftubes.lyx
@ -124,6 +124,12 @@ LRFTubes documentation - v1.1
|
||||
Dr.ir.
|
||||
J.A.
|
||||
de Jong
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
Ir.
|
||||
C.
|
||||
Jansen
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -8735,7 +8741,7 @@ where
|
||||
\begin_layout Standard
|
||||
After some algebraic manipulations we find:
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $z_{m}u=\left(p_{l}-p_{r}\right)S+B\ell I$
|
||||
@ -8832,7 +8838,7 @@ To transfer matrix notation:
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l} & =p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}},\\
|
||||
\frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l} & =p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}},\label{eq:U_vs_V}\\
|
||||
U_{r}-U_{l} & =0,
|
||||
\end{align}
|
||||
|
||||
@ -8869,6 +8875,147 @@ where
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Computing the voltage input for given velocity
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Suppose we know the membrane velocity, and we want to know the corresponding
|
||||
driving voltage.
|
||||
For that we can rearrange Eq.
|
||||
\begin_inset space ~
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:U_vs_V"
|
||||
|
||||
\end_inset
|
||||
|
||||
a bit:
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l}=p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Filling in
|
||||
\begin_inset Formula $S_{l}$
|
||||
\end_inset
|
||||
|
||||
is
|
||||
\begin_inset Formula $S_{r}$
|
||||
\end_inset
|
||||
|
||||
=
|
||||
\begin_inset Formula $S_{d}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\frac{p_{r}-p_{l}}{U}=Z_{\mathrm{ac}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}+Z_{\mathrm{ac}}S\right)U=\frac{S_{d}B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Or:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\left(\frac{B\ell}{S_{d}}+\frac{Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}+z_{m}/S_{d}\right)}{B\ell}\right)U=V_{\mathrm{in}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
V_{\mathrm{in}}=\left(\frac{B\ell}{S_{d}}+\frac{Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}+z_{m}/S_{d}\right)}{B\ell}\right)U,
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
or equivalently in terms of the mechanical velocity:
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\frac{B\ell^{2}+Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}S_{d}+z_{m}\right)}{B\ell}u=V_{\mathrm{in}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
V_{\mathrm{in}}=\frac{B\ell^{2}+Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}S_{d}+z_{m}\right)}{B\ell}u
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
For a COMSOL implementation, in terms of the computed acoustic pressure
|
||||
and derivatives thereof (to create a linear system of equations):
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $V_{\mathrm{in}}=\frac{B\ell^{2}u+Z_{\mathrm{el}}\left(p+z_{m}u\right)}{B\ell}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $V_{\mathrm{in}}=\left(B\ell+\frac{Z_{\mathrm{el}}z_{m}}{B\ell}\right)u+\frac{Z_{\mathrm{el}}}{B\ell}p$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
V_{\mathrm{in}}=\left(B\ell+\frac{Z_{\mathrm{el}}z_{m}}{B\ell}\right)u+\frac{Z_{\mathrm{el}}}{B\ell}F_{\mathrm{spk}},
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $F_{\mathrm{spk}}$
|
||||
\end_inset
|
||||
|
||||
is the net force the speaker exerts
|
||||
\emph on
|
||||
on the fluid
|
||||
\emph default
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
As antireciprocal segment
|
||||
\end_layout
|
||||
@ -10918,6 +11065,10 @@ Slit orifice
|
||||
Lookup model
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
COMSOL model
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\align left
|
||||
LRFTubes allows importing transfer matrix data from externally computed
|
||||
@ -11013,6 +11164,124 @@ LookupModel
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
SPICE model
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\noindent
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename img/two_port_probing.pdf
|
||||
width 90text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Two-port model, probing the transfer matrix by computing the simulation
|
||||
output.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:2-port-probing"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
A SPICE model can be created from a COMSOL model, by performing a circuit
|
||||
analysis of the system in two cases, one is the situation providing a voltage
|
||||
source on one side, and measuring the current going in, and the current
|
||||
going out on the other side, while the element is short-circuited.
|
||||
The other is similar, only in this case the segment is
|
||||
\emph on
|
||||
open
|
||||
\emph default
|
||||
on the other side.
|
||||
Fig.
|
||||
\begin_inset space ~
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:2-port-probing"
|
||||
|
||||
\end_inset
|
||||
|
||||
shows the schematic of the two cases that need to be computed.
|
||||
If we assume:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left\{ \begin{array}{c}
|
||||
p\\
|
||||
U
|
||||
\end{array}\right\} _{R}=\left[\begin{array}{cc}
|
||||
A & B\\
|
||||
C & D
|
||||
\end{array}\right]\left\{ \begin{array}{c}
|
||||
p\\
|
||||
U
|
||||
\end{array}\right\} _{L},
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
for the components of the transfer matrix, we can set the following equations:
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
U_{R}^{(1)} & =C+DU_{L}^{(1)},\\
|
||||
0 & =A+BU_{L}^{(1)},\\
|
||||
0 & =C+DU_{L}^{(2)},\\
|
||||
p_{R}^{(2)} & =A+BU_{L}^{(2)},
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
which gives four equations, for the four unknown transfer matrix coefficients.
|
||||
We can directly perform this computation using the method
|
||||
\family typewriter
|
||||
LookupModel.from_pU
|
||||
\family default
|
||||
in
|
||||
\begin_inset ERT
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
|
||||
\backslash
|
||||
lrftubes
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Chapter
|
||||
Measuring the transmission matrix using the four microphone method
|
||||
\end_layout
|
||||
@ -12708,6 +12977,17 @@ acpr.delta/acpr.rho_c
|
||||
Or we could write this with a custom density and speed of sound <— TODO!
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
2D Axisymmetric:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\family typewriter
|
||||
(hnu*(test(pr)*pr+pz*test(pz))+test(p)*p*acpr.ik^2*(1-gamma)*hkappa)*acpr.delta/ac
|
||||
pr.rho_c
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset bibtex
|
||||
LatexCommand bibtex
|
||||
|
Loading…
Reference in New Issue
Block a user