Updated status Anne

This commit is contained in:
Anne de Jong 2022-03-25 14:03:28 +01:00
parent daab881884
commit b743b9da3e
4 changed files with 282 additions and 2 deletions

Binary file not shown.

BIN
img/quadrupole_mechel.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.3 KiB

BIN
img/two_port_probing.pdf Normal file

Binary file not shown.

View File

@ -124,6 +124,12 @@ LRFTubes documentation - v1.1
Dr.ir.
J.A.
de Jong
\begin_inset Newline newline
\end_inset
Ir.
C.
Jansen
\end_layout
\begin_layout Standard
@ -8735,7 +8741,7 @@ where
\begin_layout Standard
After some algebraic manipulations we find:
\begin_inset Note Note
status open
status collapsed
\begin_layout Plain Layout
\begin_inset Formula $z_{m}u=\left(p_{l}-p_{r}\right)S+B\ell I$
@ -8832,7 +8838,7 @@ To transfer matrix notation:
\begin_inset Formula
\begin{align}
\frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l} & =p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}},\\
\frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l} & =p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}},\label{eq:U_vs_V}\\
U_{r}-U_{l} & =0,
\end{align}
@ -8869,6 +8875,147 @@ where
\end_layout
\begin_layout Subsection
Computing the voltage input for given velocity
\end_layout
\begin_layout Standard
Suppose we know the membrane velocity, and we want to know the corresponding
driving voltage.
For that we can rearrange Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:U_vs_V"
\end_inset
a bit:
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula $\frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l}=p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$
\end_inset
\end_layout
\begin_layout Plain Layout
Filling in
\begin_inset Formula $S_{l}$
\end_inset
is
\begin_inset Formula $S_{r}$
\end_inset
=
\begin_inset Formula $S_{d}$
\end_inset
and
\begin_inset Formula $\frac{p_{r}-p_{l}}{U}=Z_{\mathrm{ac}}$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}+Z_{\mathrm{ac}}S\right)U=\frac{S_{d}B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$
\end_inset
\end_layout
\begin_layout Plain Layout
Or:
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $\left(\frac{B\ell}{S_{d}}+\frac{Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}+z_{m}/S_{d}\right)}{B\ell}\right)U=V_{\mathrm{in}}$
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
V_{\mathrm{in}}=\left(\frac{B\ell}{S_{d}}+\frac{Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}+z_{m}/S_{d}\right)}{B\ell}\right)U,
\end{equation}
\end_inset
or equivalently in terms of the mechanical velocity:
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula $\frac{B\ell^{2}+Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}S_{d}+z_{m}\right)}{B\ell}u=V_{\mathrm{in}}$
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
V_{\mathrm{in}}=\frac{B\ell^{2}+Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}S_{d}+z_{m}\right)}{B\ell}u
\end{equation}
\end_inset
For a COMSOL implementation, in terms of the computed acoustic pressure
and derivatives thereof (to create a linear system of equations):
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula $V_{\mathrm{in}}=\frac{B\ell^{2}u+Z_{\mathrm{el}}\left(p+z_{m}u\right)}{B\ell}$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $V_{\mathrm{in}}=\left(B\ell+\frac{Z_{\mathrm{el}}z_{m}}{B\ell}\right)u+\frac{Z_{\mathrm{el}}}{B\ell}p$
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
V_{\mathrm{in}}=\left(B\ell+\frac{Z_{\mathrm{el}}z_{m}}{B\ell}\right)u+\frac{Z_{\mathrm{el}}}{B\ell}F_{\mathrm{spk}},
\end{equation}
\end_inset
where
\begin_inset Formula $F_{\mathrm{spk}}$
\end_inset
is the net force the speaker exerts
\emph on
on the fluid
\emph default
.
\end_layout
\begin_layout Section
As antireciprocal segment
\end_layout
@ -10918,6 +11065,10 @@ Slit orifice
Lookup model
\end_layout
\begin_layout Section
COMSOL model
\end_layout
\begin_layout Standard
\align left
LRFTubes allows importing transfer matrix data from externally computed
@ -11013,6 +11164,124 @@ LookupModel
.
\end_layout
\begin_layout Subsection
SPICE model
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename img/two_port_probing.pdf
width 90text%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Two-port model, probing the transfer matrix by computing the simulation
output.
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "fig:2-port-probing"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
A SPICE model can be created from a COMSOL model, by performing a circuit
analysis of the system in two cases, one is the situation providing a voltage
source on one side, and measuring the current going in, and the current
going out on the other side, while the element is short-circuited.
The other is similar, only in this case the segment is
\emph on
open
\emph default
on the other side.
Fig.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:2-port-probing"
\end_inset
shows the schematic of the two cases that need to be computed.
If we assume:
\begin_inset Formula
\begin{equation}
\left\{ \begin{array}{c}
p\\
U
\end{array}\right\} _{R}=\left[\begin{array}{cc}
A & B\\
C & D
\end{array}\right]\left\{ \begin{array}{c}
p\\
U
\end{array}\right\} _{L},
\end{equation}
\end_inset
for the components of the transfer matrix, we can set the following equations:
\begin_inset Formula
\begin{align}
U_{R}^{(1)} & =C+DU_{L}^{(1)},\\
0 & =A+BU_{L}^{(1)},\\
0 & =C+DU_{L}^{(2)},\\
p_{R}^{(2)} & =A+BU_{L}^{(2)},
\end{align}
\end_inset
which gives four equations, for the four unknown transfer matrix coefficients.
We can directly perform this computation using the method
\family typewriter
LookupModel.from_pU
\family default
in
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
lrftubes
\end_layout
\end_inset
.
\end_layout
\begin_layout Chapter
Measuring the transmission matrix using the four microphone method
\end_layout
@ -12708,6 +12977,17 @@ acpr.delta/acpr.rho_c
Or we could write this with a custom density and speed of sound <— TODO!
\end_layout
\begin_layout Standard
2D Axisymmetric:
\end_layout
\begin_layout Standard
\family typewriter
(hnu*(test(pr)*pr+pz*test(pz))+test(p)*p*acpr.ik^2*(1-gamma)*hkappa)*acpr.delta/ac
pr.rho_c
\end_layout
\begin_layout Standard
\begin_inset CommandInset bibtex
LatexCommand bibtex