23 lines
727 B
Python
23 lines
727 B
Python
|
import numpy as np
|
||
|
import numba
|
||
|
|
||
|
rescale_functions = {}
|
||
|
|
||
|
def rescale_clip_source(xx, scale, offset, vmin, vmax, yy):
|
||
|
for i in range(xx.size):
|
||
|
val = (xx[i] - offset) * scale
|
||
|
yy[i] = min(max(val, vmin), vmax)
|
||
|
|
||
|
def rescaleData(data, scale, offset, dtype, clip):
|
||
|
data_out = np.empty_like(data, dtype=dtype)
|
||
|
key = (data.dtype.name, data_out.dtype.name)
|
||
|
func = rescale_functions.get(key)
|
||
|
if func is None:
|
||
|
func = numba.guvectorize(
|
||
|
[f'{key[0]}[:],f8,f8,f8,f8,{key[1]}[:]'],
|
||
|
'(n),(),(),(),()->(n)',
|
||
|
nopython=True)(rescale_clip_source)
|
||
|
rescale_functions[key] = func
|
||
|
func(data, scale, offset, clip[0], clip[1], out=data_out)
|
||
|
return data_out
|