pyqtgraph/examples/ColorGradientPlots.py

148 lines
6.2 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""
This example demonstrates plotting with color gradients.
It also shows multiple plots with timed rolling updates
"""
# Add path to library (just for examples; you do not need this)
import initExample
import numpy as np
import time
from pyqtgraph.Qt import QtCore, QtGui, QtWidgets, mkQApp
import pyqtgraph as pg
class DataSource(object):
""" source of buffered demonstration data """
def __init__(self, sample_rate=200., signal_period=0.55, negative_period=None, max_length=300):
""" prepare, but don't start yet """
self.rate = sample_rate
self.period = signal_period
self.neg_period = negative_period
self.start_time = 0.
self.sample_idx = 0 # number of next sample to be taken
def start(self, timestamp):
""" start acquiring simulated data """
self.start_time = timestamp
self.sample_idx = 0
def get_data(self, timestamp, max_length=6000):
""" return all data acquired since last get_data call """
next_idx = int( (timestamp - self.start_time) * self.rate )
if next_idx - self.sample_idx > max_length:
self.sample_idx = next_idx - max_length # catch up if needed
# create some mildly intersting data:
sample_phases = np.arange( self.sample_idx, next_idx, dtype=np.float64 )
self.sample_idx = next_idx
sample_phase_pos = sample_phases / (self.period*self.rate)
sample_phase_pos %= 1.0
if self.neg_period is None:
return sample_phase_pos**4
sample_phase_neg = sample_phases / (self.neg_period*self.rate)
sample_phase_neg %= 1.0
return sample_phase_pos**4 - sample_phase_neg**4
class MainWindow(pg.GraphicsLayoutWidget):
""" example application main window """
def __init__(self):
super().__init__()
self.setWindowTitle('pyqtgraph example: gradient plots')
self.resize(800,800)
self.show()
layout = self # we are using a GraphicsLayoutWidget as main window for convenience
cm = pg.colormap.get('CET-L17')
cm.reverse()
pen0 = cm.getPen( span=(0.0,1.0), width=5 )
curve0 = pg.PlotDataItem(pen=pen0 )
comment0 = 'Clipped color map applied to vertical axis'
cm = pg.colormap.get('CET-D1')
cm.setMappingMode('diverging')
brush = cm.getBrush( span=(-1., 1.), orientation='vertical' )
curve1 = pg.PlotDataItem(pen='w', brush=brush, fillLevel=0.0 )
comment1 = 'Diverging vertical color map used as brush'
cm = pg.colormap.get('CET-L17')
cm.setMappingMode('mirror')
pen2 = cm.getPen( span=(400.0,600.0), width=5, orientation='horizontal' )
curve2 = pg.PlotDataItem(pen=pen2 )
comment2 = 'Mirrored color map applied to horizontal axis'
cm = pg.colormap.get('CET-C2')
cm.setMappingMode('repeat')
pen3 = cm.getPen( span=(100, 200), width=5, orientation='horizontal' )
curve3 = pg.PlotDataItem(pen=pen3 ) # vertical diverging fill
comment3 = 'Repeated color map applied to horizontal axis'
curves = (curve0, curve1, curve2, curve3)
comments = (comment0, comment1, comment2, comment3)
length = int( 3.0 * 200. ) # length of display in samples
self.top_plot = None
for idx, (curve, comment) in enumerate( zip(curves,comments) ):
plot = layout.addPlot(row=idx+1, col=0)
text = pg.TextItem( comment, anchor=(0,1) )
text.setPos(0.,1.)
if self.top_plot is None:
self.top_plot = plot
else:
plot.setXLink( self.top_plot )
plot.addItem( curve )
plot.addItem( text )
plot.setXRange( 0, length )
if idx != 1: plot.setYRange( 0. , 1.1 )
else : plot.setYRange( -1. , 1.2 ) # last plot include positive/negative data
self.traces = (
{'crv': curve0, 'buf': np.zeros( length ), 'ptr':0, 'ds': DataSource( signal_period=0.55 ) },
{'crv': curve1, 'buf': np.zeros( length ), 'ptr':0, 'ds': DataSource( signal_period=0.61, negative_period=0.55 ) },
{'crv': curve2, 'buf': np.zeros( length ), 'ptr':0, 'ds': DataSource( signal_period=0.65 ) },
{'crv': curve3, 'buf': np.zeros( length ), 'ptr':0, 'ds': DataSource( signal_period=0.52 ) },
)
self.timer = QtCore.QTimer(timerType=QtCore.Qt.TimerType.PreciseTimer)
self.timer.timeout.connect(self.update)
timestamp = time.perf_counter()
for dic in self.traces:
dic['ds'].start( timestamp )
self.last_update = time.perf_counter()
self.mean_dt = None
self.timer.start(33)
def update(self):
""" called by timer at 30 Hz """
timestamp = time.perf_counter()
# measure actual update rate:
dt = timestamp - self.last_update
if self.mean_dt is None:
self.mean_dt = dt
else:
self.mean_dt = 0.95 * self.mean_dt + 0.05 * dt # average over fluctuating measurements
self.top_plot.setTitle(
'refresh: {:0.1f}ms -> {:0.1f} fps'.format( 1000*self.mean_dt, 1/self.mean_dt )
)
# handle rolling buffer:
self.last_update = timestamp
for dic in self.traces:
new_data = dic['ds'].get_data( timestamp )
idx_a = dic['ptr']
idx_b = idx_a + len( new_data )
len_buffer = dic['buf'].shape[0]
if idx_b < len_buffer: # data does not cross buffer boundary
dic['buf'][idx_a:idx_b] = new_data
else: # part of the new data needs to roll over to beginning of buffer
len_1 = len_buffer - idx_a # this many elements still fit
dic['buf'][idx_a:idx_a+len_1] = new_data[:len_1] # first part of data at end
idx_b = len(new_data) - len_1
dic['buf'][0:idx_b] = new_data[len_1:] # second part of data at re-start
dic['ptr'] = idx_b
dic['crv'].setData( dic['buf'] )
mkQApp("Gradient plotting example")
main_window = MainWindow()
## Start Qt event loop
if __name__ == '__main__':
2021-05-14 05:28:22 +08:00
pg.exec()