2012-03-01 21:55:32 -05:00
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
from pyqtgraph.Qt import QtCore, QtGui
|
|
|
|
from ..Node import Node
|
|
|
|
from scipy.signal import detrend
|
|
|
|
from scipy.ndimage import median_filter, gaussian_filter
|
|
|
|
#from pyqtgraph.SignalProxy import SignalProxy
|
2012-05-11 18:05:41 -04:00
|
|
|
from . import functions
|
|
|
|
from .common import *
|
2012-03-01 21:55:32 -05:00
|
|
|
import numpy as np
|
|
|
|
|
2012-06-18 17:48:33 -04:00
|
|
|
import pyqtgraph.metaarray as metaarray
|
2012-03-01 21:55:32 -05:00
|
|
|
|
|
|
|
|
|
|
|
class Downsample(CtrlNode):
|
|
|
|
"""Downsample by averaging samples together."""
|
|
|
|
nodeName = 'Downsample'
|
|
|
|
uiTemplate = [
|
|
|
|
('n', 'intSpin', {'min': 1, 'max': 1000000})
|
|
|
|
]
|
|
|
|
|
|
|
|
def processData(self, data):
|
|
|
|
return functions.downsample(data, self.ctrls['n'].value(), axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
class Subsample(CtrlNode):
|
|
|
|
"""Downsample by selecting every Nth sample."""
|
|
|
|
nodeName = 'Subsample'
|
|
|
|
uiTemplate = [
|
|
|
|
('n', 'intSpin', {'min': 1, 'max': 1000000})
|
|
|
|
]
|
|
|
|
|
|
|
|
def processData(self, data):
|
|
|
|
return data[::self.ctrls['n'].value()]
|
|
|
|
|
|
|
|
|
|
|
|
class Bessel(CtrlNode):
|
|
|
|
"""Bessel filter. Input data must have time values."""
|
|
|
|
nodeName = 'BesselFilter'
|
|
|
|
uiTemplate = [
|
|
|
|
('band', 'combo', {'values': ['lowpass', 'highpass'], 'index': 0}),
|
|
|
|
('cutoff', 'spin', {'value': 1000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
|
|
|
|
('order', 'intSpin', {'value': 4, 'min': 1, 'max': 16}),
|
|
|
|
('bidir', 'check', {'checked': True})
|
|
|
|
]
|
|
|
|
|
|
|
|
def processData(self, data):
|
|
|
|
s = self.stateGroup.state()
|
|
|
|
if s['band'] == 'lowpass':
|
|
|
|
mode = 'low'
|
|
|
|
else:
|
|
|
|
mode = 'high'
|
|
|
|
return functions.besselFilter(data, bidir=s['bidir'], btype=mode, cutoff=s['cutoff'], order=s['order'])
|
|
|
|
|
|
|
|
|
|
|
|
class Butterworth(CtrlNode):
|
|
|
|
"""Butterworth filter"""
|
|
|
|
nodeName = 'ButterworthFilter'
|
|
|
|
uiTemplate = [
|
|
|
|
('band', 'combo', {'values': ['lowpass', 'highpass'], 'index': 0}),
|
|
|
|
('wPass', 'spin', {'value': 1000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
|
|
|
|
('wStop', 'spin', {'value': 2000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
|
|
|
|
('gPass', 'spin', {'value': 2.0, 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'dB', 'siPrefix': True}),
|
|
|
|
('gStop', 'spin', {'value': 20.0, 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'dB', 'siPrefix': True}),
|
|
|
|
('bidir', 'check', {'checked': True})
|
|
|
|
]
|
|
|
|
|
|
|
|
def processData(self, data):
|
|
|
|
s = self.stateGroup.state()
|
|
|
|
if s['band'] == 'lowpass':
|
|
|
|
mode = 'low'
|
|
|
|
else:
|
|
|
|
mode = 'high'
|
|
|
|
ret = functions.butterworthFilter(data, bidir=s['bidir'], btype=mode, wPass=s['wPass'], wStop=s['wStop'], gPass=s['gPass'], gStop=s['gStop'])
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
class Mean(CtrlNode):
|
|
|
|
"""Filters data by taking the mean of a sliding window"""
|
|
|
|
nodeName = 'MeanFilter'
|
|
|
|
uiTemplate = [
|
|
|
|
('n', 'intSpin', {'min': 1, 'max': 1000000})
|
|
|
|
]
|
|
|
|
|
|
|
|
@metaArrayWrapper
|
|
|
|
def processData(self, data):
|
|
|
|
n = self.ctrls['n'].value()
|
|
|
|
return functions.rollingSum(data, n) / n
|
|
|
|
|
|
|
|
|
|
|
|
class Median(CtrlNode):
|
|
|
|
"""Filters data by taking the median of a sliding window"""
|
|
|
|
nodeName = 'MedianFilter'
|
|
|
|
uiTemplate = [
|
|
|
|
('n', 'intSpin', {'min': 1, 'max': 1000000})
|
|
|
|
]
|
|
|
|
|
|
|
|
@metaArrayWrapper
|
|
|
|
def processData(self, data):
|
|
|
|
return median_filter(data, self.ctrls['n'].value())
|
|
|
|
|
|
|
|
class Mode(CtrlNode):
|
|
|
|
"""Filters data by taking the mode (histogram-based) of a sliding window"""
|
|
|
|
nodeName = 'ModeFilter'
|
|
|
|
uiTemplate = [
|
|
|
|
('window', 'intSpin', {'value': 500, 'min': 1, 'max': 1000000}),
|
|
|
|
]
|
|
|
|
|
|
|
|
@metaArrayWrapper
|
|
|
|
def processData(self, data):
|
|
|
|
return functions.modeFilter(data, self.ctrls['window'].value())
|
|
|
|
|
|
|
|
|
|
|
|
class Denoise(CtrlNode):
|
|
|
|
"""Removes anomalous spikes from data, replacing with nearby values"""
|
|
|
|
nodeName = 'DenoiseFilter'
|
|
|
|
uiTemplate = [
|
|
|
|
('radius', 'intSpin', {'value': 2, 'min': 0, 'max': 1000000}),
|
|
|
|
('threshold', 'doubleSpin', {'value': 4.0, 'min': 0, 'max': 1000})
|
|
|
|
]
|
|
|
|
|
|
|
|
def processData(self, data):
|
|
|
|
#print "DENOISE"
|
|
|
|
s = self.stateGroup.state()
|
|
|
|
return functions.denoise(data, **s)
|
|
|
|
|
|
|
|
|
|
|
|
class Gaussian(CtrlNode):
|
|
|
|
"""Gaussian smoothing filter."""
|
|
|
|
nodeName = 'GaussianFilter'
|
|
|
|
uiTemplate = [
|
|
|
|
('sigma', 'doubleSpin', {'min': 0, 'max': 1000000})
|
|
|
|
]
|
|
|
|
|
|
|
|
@metaArrayWrapper
|
|
|
|
def processData(self, data):
|
|
|
|
return gaussian_filter(data, self.ctrls['sigma'].value())
|
|
|
|
|
|
|
|
|
|
|
|
class Derivative(CtrlNode):
|
|
|
|
"""Returns the pointwise derivative of the input"""
|
|
|
|
nodeName = 'DerivativeFilter'
|
|
|
|
|
|
|
|
def processData(self, data):
|
2012-06-18 17:48:33 -04:00
|
|
|
if hasattr(data, 'implements') and data.implements('MetaArray'):
|
2012-03-01 21:55:32 -05:00
|
|
|
info = data.infoCopy()
|
|
|
|
if 'values' in info[0]:
|
|
|
|
info[0]['values'] = info[0]['values'][:-1]
|
2012-06-18 17:48:33 -04:00
|
|
|
return metaarray.MetaArray(data[1:] - data[:-1], info=info)
|
2012-03-01 21:55:32 -05:00
|
|
|
else:
|
|
|
|
return data[1:] - data[:-1]
|
|
|
|
|
|
|
|
|
|
|
|
class Integral(CtrlNode):
|
|
|
|
"""Returns the pointwise integral of the input"""
|
|
|
|
nodeName = 'IntegralFilter'
|
|
|
|
|
|
|
|
@metaArrayWrapper
|
|
|
|
def processData(self, data):
|
|
|
|
data[1:] += data[:-1]
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
class Detrend(CtrlNode):
|
|
|
|
"""Removes linear trend from the data"""
|
|
|
|
nodeName = 'DetrendFilter'
|
|
|
|
|
|
|
|
@metaArrayWrapper
|
|
|
|
def processData(self, data):
|
|
|
|
return detrend(data)
|
|
|
|
|
|
|
|
|
|
|
|
class AdaptiveDetrend(CtrlNode):
|
|
|
|
"""Removes baseline from data, ignoring anomalous events"""
|
|
|
|
nodeName = 'AdaptiveDetrend'
|
|
|
|
uiTemplate = [
|
|
|
|
('threshold', 'doubleSpin', {'value': 3.0, 'min': 0, 'max': 1000000})
|
|
|
|
]
|
|
|
|
|
|
|
|
def processData(self, data):
|
|
|
|
return functions.adaptiveDetrend(data, threshold=self.ctrls['threshold'].value())
|
|
|
|
|
|
|
|
class HistogramDetrend(CtrlNode):
|
|
|
|
"""Removes baseline from data by computing mode (from histogram) of beginning and end of data."""
|
|
|
|
nodeName = 'HistogramDetrend'
|
|
|
|
uiTemplate = [
|
2012-03-23 13:38:53 -04:00
|
|
|
('windowSize', 'intSpin', {'value': 500, 'min': 10, 'max': 1000000, 'suffix': 'pts'}),
|
2012-03-01 21:55:32 -05:00
|
|
|
('numBins', 'intSpin', {'value': 50, 'min': 3, 'max': 1000000})
|
|
|
|
]
|
|
|
|
|
|
|
|
def processData(self, data):
|
|
|
|
ws = self.ctrls['windowSize'].value()
|
|
|
|
bn = self.ctrls['numBins'].value()
|
|
|
|
return functions.histogramDetrend(data, window=ws, bins=bn)
|
|
|
|
|
|
|
|
|
|
|
|
|
2012-06-18 13:45:47 -04:00
|
|
|
class RemovePeriodic(CtrlNode):
|
|
|
|
nodeName = 'RemovePeriodic'
|
|
|
|
uiTemplate = [
|
|
|
|
#('windowSize', 'intSpin', {'value': 500, 'min': 10, 'max': 1000000, 'suffix': 'pts'}),
|
|
|
|
#('numBins', 'intSpin', {'value': 50, 'min': 3, 'max': 1000000})
|
|
|
|
('f0', 'spin', {'value': 60, 'suffix': 'Hz', 'siPrefix': True, 'min': 0, 'max': None}),
|
|
|
|
('harmonics', 'intSpin', {'value': 30, 'min': 0}),
|
|
|
|
]
|
|
|
|
|
|
|
|
def processData(self, data):
|
|
|
|
times = data.xvals('Time')
|
|
|
|
dt = times[1]-times[0]
|
|
|
|
|
|
|
|
data1 = data.asarray()
|
|
|
|
ft = np.fft.fft(data1)
|
|
|
|
|
|
|
|
## determine frequencies in fft data
|
|
|
|
df = 1.0 / (len(data1) * dt)
|
|
|
|
freqs = np.linspace(0.0, (len(ft)-1) * df, len(ft))
|
|
|
|
|
|
|
|
## flatten spikes at f0 and harmonics
|
|
|
|
f0 = self.ctrls['f0'].value()
|
|
|
|
for i in xrange(1, self.ctrls['harmonics'].value()+2):
|
|
|
|
f = f0 * i # target frequency
|
|
|
|
|
|
|
|
## determine index range to check for this frequency
|
|
|
|
ind1 = int(np.floor(f / df))
|
|
|
|
ind2 = int(np.ceil(f / df))
|
|
|
|
if ind1 > len(ft)/2.:
|
|
|
|
break
|
|
|
|
print "--->", f
|
|
|
|
print ind1, ind2, abs(ft[ind1-2:ind2+2])
|
|
|
|
print ft[ind1-2:ind2+2]
|
|
|
|
mag = (abs(ft[ind1-1]) + abs(ft[ind2+1])) * 0.5
|
|
|
|
print "new mag:", mag
|
|
|
|
for j in range(ind1, ind2+1):
|
|
|
|
phase = np.angle(ft[j])
|
|
|
|
re = mag * np.cos(phase)
|
|
|
|
im = mag * np.sin(phase)
|
|
|
|
ft[j] = re + im*1j
|
|
|
|
ft[len(ft)-j] = re - im*1j
|
|
|
|
print abs(ft[ind1-2:ind2+2])
|
|
|
|
print ft[ind1-2:ind2+2]
|
|
|
|
|
|
|
|
data2 = np.fft.ifft(ft).real
|
|
|
|
|
|
|
|
ma = metaarray.MetaArray(data2, info=data.infoCopy())
|
|
|
|
return ma
|
|
|
|
|
|
|
|
|
|
|
|
|