Support for FFT with non-uniform time sampling
This commit is contained in:
parent
79bd7ea187
commit
2095a4c8ae
@ -495,10 +495,7 @@ class PlotDataItem(GraphicsObject):
|
||||
##y = resample(y[:len(x)*ds], len(x)) ## scipy.signal.resample causes nasty ringing
|
||||
#y = y[::ds]
|
||||
if self.opts['fftMode']:
|
||||
f = np.fft.fft(y) / len(y)
|
||||
y = abs(f[1:len(f)/2])
|
||||
dt = x[-1] - x[0]
|
||||
x = np.linspace(0, 0.5*len(x)/dt, len(y))
|
||||
x,y = self._fourierTransform(x, y)
|
||||
if self.opts['logMode'][0]:
|
||||
x = np.log10(x)
|
||||
if self.opts['logMode'][1]:
|
||||
@ -666,8 +663,21 @@ class PlotDataItem(GraphicsObject):
|
||||
self.xDisp = self.yDisp = None
|
||||
self.updateItems()
|
||||
|
||||
|
||||
|
||||
def _fourierTransform(self, x, y):
|
||||
## Perform fourier transform. If x values are not sampled uniformly,
|
||||
## then use interpolate.griddata to resample before taking fft.
|
||||
dx = np.diff(x)
|
||||
uniform = not np.any(np.abs(dx-dx[0]) > (abs(dx[0]) / 1000.))
|
||||
if not uniform:
|
||||
import scipy.interpolate as interp
|
||||
x2 = np.linspace(x[0], x[-1], len(x))
|
||||
y = interp.griddata(x, y, x2, method='linear')
|
||||
x = x2
|
||||
f = np.fft.fft(y) / len(y)
|
||||
y = abs(f[1:len(f)/2])
|
||||
dt = x[-1] - x[0]
|
||||
x = np.linspace(0, 0.5*len(x)/dt, len(y))
|
||||
return x, y
|
||||
|
||||
def dataType(obj):
|
||||
if hasattr(obj, '__len__') and len(obj) == 0:
|
||||
|
Loading…
Reference in New Issue
Block a user