Added in flowchart's filter functions
This commit is contained in:
parent
09995e0d12
commit
20c40a70d5
@ -1,61 +1,88 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys, os
|
||||
|
||||
## Make sure pyqtgraph is importable
|
||||
p = os.path.dirname(os.path.abspath(__file__))
|
||||
p = os.path.join(p, '..', '..')
|
||||
sys.path.insert(0, p)
|
||||
import initExample ## Add path to library (just for examples; you do not need this)
|
||||
|
||||
|
||||
from pyqtgraph.flowchart import Flowchart
|
||||
from pyqtgraph.Qt import QtGui
|
||||
|
||||
#import pyqtgraph.flowchart as f
|
||||
import pyqtgraph as pg
|
||||
import numpy as np
|
||||
|
||||
app = QtGui.QApplication([])
|
||||
|
||||
#TETRACYCLINE = True
|
||||
|
||||
win = QtGui.QMainWindow()
|
||||
cw = QtGui.QWidget()
|
||||
win.setCentralWidget(cw)
|
||||
layout = QtGui.QGridLayout()
|
||||
cw.setLayout(layout)
|
||||
|
||||
fc = Flowchart(terminals={
|
||||
'dataIn': {'io': 'in'},
|
||||
'dataOut': {'io': 'out'}
|
||||
})
|
||||
w = fc.widget()
|
||||
w.resize(400,200)
|
||||
w.show()
|
||||
|
||||
n1 = fc.createNode('Add', pos=(0,-80))
|
||||
n2 = fc.createNode('Subtract', pos=(140,-10))
|
||||
n3 = fc.createNode('Abs', pos=(0, 80))
|
||||
n4 = fc.createNode('Add', pos=(140,100))
|
||||
layout.addWidget(fc.widget(), 0, 0, 2, 1)
|
||||
|
||||
fc.connectTerminals(fc.dataIn, n1.A)
|
||||
fc.connectTerminals(fc.dataIn, n1.B)
|
||||
fc.connectTerminals(fc.dataIn, n2.A)
|
||||
fc.connectTerminals(n1.Out, n4.A)
|
||||
fc.connectTerminals(n1.Out, n2.B)
|
||||
fc.connectTerminals(n2.Out, n3.In)
|
||||
fc.connectTerminals(n3.Out, n4.B)
|
||||
fc.connectTerminals(n4.Out, fc.dataOut)
|
||||
pw1 = pg.PlotWidget()
|
||||
pw2 = pg.PlotWidget()
|
||||
layout.addWidget(pw1, 0, 1)
|
||||
layout.addWidget(pw2, 1, 1)
|
||||
|
||||
win.show()
|
||||
|
||||
|
||||
def process(**kargs):
|
||||
return fc.process(**kargs)
|
||||
data = np.random.normal(size=1000)
|
||||
data[200:300] += 1
|
||||
data += np.sin(np.linspace(0, 100, 1000))
|
||||
|
||||
fc.setInput(dataIn=data)
|
||||
|
||||
pw1Node = fc.createNode('PlotWidget', pos=(0, -150))
|
||||
pw1Node.setPlot(pw1)
|
||||
|
||||
pw2Node = fc.createNode('PlotWidget', pos=(150, -150))
|
||||
pw2Node.setPlot(pw2)
|
||||
|
||||
fNode = fc.createNode('GaussianFilter', pos=(0, 0))
|
||||
fc.connectTerminals(fc.dataIn, fNode.In)
|
||||
fc.connectTerminals(fc.dataIn, pw1Node.In)
|
||||
fc.connectTerminals(fNode.Out, pw2Node.In)
|
||||
fc.connectTerminals(fNode.Out, fc.dataOut)
|
||||
|
||||
|
||||
#n1 = fc.createNode('Add', pos=(0,-80))
|
||||
#n2 = fc.createNode('Subtract', pos=(140,-10))
|
||||
#n3 = fc.createNode('Abs', pos=(0, 80))
|
||||
#n4 = fc.createNode('Add', pos=(140,100))
|
||||
|
||||
#fc.connectTerminals(fc.dataIn, n1.A)
|
||||
#fc.connectTerminals(fc.dataIn, n1.B)
|
||||
#fc.connectTerminals(fc.dataIn, n2.A)
|
||||
#fc.connectTerminals(n1.Out, n4.A)
|
||||
#fc.connectTerminals(n1.Out, n2.B)
|
||||
#fc.connectTerminals(n2.Out, n3.In)
|
||||
#fc.connectTerminals(n3.Out, n4.B)
|
||||
#fc.connectTerminals(n4.Out, fc.dataOut)
|
||||
|
||||
|
||||
#def process(**kargs):
|
||||
#return fc.process(**kargs)
|
||||
|
||||
|
||||
print process(dataIn=7)
|
||||
#print process(dataIn=7)
|
||||
|
||||
fc.setInput(dataIn=3)
|
||||
#fc.setInput(dataIn=3)
|
||||
|
||||
s = fc.saveState()
|
||||
fc.clear()
|
||||
#s = fc.saveState()
|
||||
#fc.clear()
|
||||
|
||||
fc.restoreState(s)
|
||||
#fc.restoreState(s)
|
||||
|
||||
fc.setInput(dataIn=3)
|
||||
#fc.setInput(dataIn=3)
|
||||
|
||||
#f.NodeMod.TETRACYCLINE = False
|
||||
|
||||
if sys.flags.interactive == 0:
|
||||
## Start Qt event loop unless running in interactive mode or using pyside.
|
||||
import sys
|
||||
if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
|
||||
app.exec_()
|
||||
|
||||
|
216
flowchart/library/functions.py
Normal file
216
flowchart/library/functions.py
Normal file
@ -0,0 +1,216 @@
|
||||
def downsample(data, n, axis=0, xvals='subsample'):
|
||||
"""Downsample by averaging points together across axis.
|
||||
If multiple axes are specified, runs once per axis.
|
||||
If a metaArray is given, then the axis values can be either subsampled
|
||||
or downsampled to match.
|
||||
"""
|
||||
ma = None
|
||||
if isinstance(data, MetaArray):
|
||||
ma = data
|
||||
data = data.view(ndarray)
|
||||
|
||||
|
||||
if hasattr(axis, '__len__'):
|
||||
if not hasattr(n, '__len__'):
|
||||
n = [n]*len(axis)
|
||||
for i in range(len(axis)):
|
||||
data = downsample(data, n[i], axis[i])
|
||||
return data
|
||||
|
||||
nPts = int(data.shape[axis] / n)
|
||||
s = list(data.shape)
|
||||
s[axis] = nPts
|
||||
s.insert(axis+1, n)
|
||||
sl = [slice(None)] * data.ndim
|
||||
sl[axis] = slice(0, nPts*n)
|
||||
d1 = data[tuple(sl)]
|
||||
#print d1.shape, s
|
||||
d1.shape = tuple(s)
|
||||
d2 = d1.mean(axis+1)
|
||||
|
||||
if ma is None:
|
||||
return d2
|
||||
else:
|
||||
info = ma.infoCopy()
|
||||
if 'values' in info[axis]:
|
||||
if xvals == 'subsample':
|
||||
info[axis]['values'] = info[axis]['values'][::n][:nPts]
|
||||
elif xvals == 'downsample':
|
||||
info[axis]['values'] = downsample(info[axis]['values'], n)
|
||||
return MetaArray(d2, info=info)
|
||||
|
||||
|
||||
def applyFilter(data, b, a, padding=100, bidir=True):
|
||||
"""Apply a linear filter with coefficients a, b. Optionally pad the data before filtering
|
||||
and/or run the filter in both directions."""
|
||||
d1 = data.view(ndarray)
|
||||
|
||||
if padding > 0:
|
||||
d1 = numpy.hstack([d1[:padding], d1, d1[-padding:]])
|
||||
|
||||
if bidir:
|
||||
d1 = scipy.signal.lfilter(b, a, scipy.signal.lfilter(b, a, d1)[::-1])[::-1]
|
||||
else:
|
||||
d1 = scipy.signal.lfilter(b, a, d1)
|
||||
|
||||
if padding > 0:
|
||||
d1 = d1[padding:-padding]
|
||||
|
||||
if isinstance(data, MetaArray):
|
||||
return MetaArray(d1, info=data.infoCopy())
|
||||
else:
|
||||
return d1
|
||||
|
||||
def besselFilter(data, cutoff, order=1, dt=None, btype='low', bidir=True):
|
||||
"""return data passed through bessel filter"""
|
||||
if dt is None:
|
||||
try:
|
||||
tvals = data.xvals('Time')
|
||||
dt = (tvals[-1]-tvals[0]) / (len(tvals)-1)
|
||||
except:
|
||||
raise Exception('Must specify dt for this data.')
|
||||
|
||||
b,a = scipy.signal.bessel(order, cutoff * dt, btype=btype)
|
||||
|
||||
return applyFilter(data, b, a, bidir=bidir)
|
||||
#base = data.mean()
|
||||
#d1 = scipy.signal.lfilter(b, a, data.view(ndarray)-base) + base
|
||||
#if isinstance(data, MetaArray):
|
||||
#return MetaArray(d1, info=data.infoCopy())
|
||||
#return d1
|
||||
|
||||
def butterworthFilter(data, wPass, wStop=None, gPass=2.0, gStop=20.0, order=1, dt=None, btype='low', bidir=True):
|
||||
"""return data passed through bessel filter"""
|
||||
if dt is None:
|
||||
try:
|
||||
tvals = data.xvals('Time')
|
||||
dt = (tvals[-1]-tvals[0]) / (len(tvals)-1)
|
||||
except:
|
||||
raise Exception('Must specify dt for this data.')
|
||||
|
||||
if wStop is None:
|
||||
wStop = wPass * 2.0
|
||||
ord, Wn = scipy.signal.buttord(wPass*dt*2., wStop*dt*2., gPass, gStop)
|
||||
#print "butterworth ord %f Wn %f c %f sc %f" % (ord, Wn, cutoff, stopCutoff)
|
||||
b,a = scipy.signal.butter(ord, Wn, btype=btype)
|
||||
|
||||
return applyFilter(data, b, a, bidir=bidir)
|
||||
|
||||
|
||||
def rollingSum(data, n):
|
||||
d1 = data.copy()
|
||||
d1[1:] += d1[:-1] # integrate
|
||||
d2 = np.empty(len(d1) - n + 1, dtype=data.dtype)
|
||||
d2[0] = d1[n-1] # copy first point
|
||||
d2[1:] = d1[n:] - d1[:-n] # subtract
|
||||
return d2
|
||||
|
||||
|
||||
def mode(data, bins=None):
|
||||
"""Returns location max value from histogram."""
|
||||
if bins is None:
|
||||
bins = int(len(data)/10.)
|
||||
if bins < 2:
|
||||
bins = 2
|
||||
y, x = np.histogram(data, bins=bins)
|
||||
ind = np.argmax(y)
|
||||
mode = 0.5 * (x[ind] + x[ind+1])
|
||||
return mode
|
||||
|
||||
def modeFilter(data, window=500, step=None, bins=None):
|
||||
"""Filter based on histogram-based mode function"""
|
||||
d1 = data.view(np.ndarray)
|
||||
vals = []
|
||||
l2 = int(window/2.)
|
||||
if step is None:
|
||||
step = l2
|
||||
i = 0
|
||||
while True:
|
||||
if i > len(data)-step:
|
||||
break
|
||||
vals.append(mode(d1[i:i+window], bins))
|
||||
i += step
|
||||
|
||||
chunks = [np.linspace(vals[0], vals[0], l2)]
|
||||
for i in range(len(vals)-1):
|
||||
chunks.append(np.linspace(vals[i], vals[i+1], step))
|
||||
remain = len(data) - step*(len(vals)-1) - l2
|
||||
chunks.append(np.linspace(vals[-1], vals[-1], remain))
|
||||
d2 = np.hstack(chunks)
|
||||
|
||||
if isinstance(data, MetaArray):
|
||||
return MetaArray(d2, info=data.infoCopy())
|
||||
return d2
|
||||
|
||||
def denoise(data, radius=2, threshold=4):
|
||||
"""Very simple noise removal function. Compares a point to surrounding points,
|
||||
replaces with nearby values if the difference is too large."""
|
||||
|
||||
|
||||
r2 = radius * 2
|
||||
d1 = data.view(ndarray)
|
||||
d2 = data[radius:] - data[:-radius] #a derivative
|
||||
#d3 = data[r2:] - data[:-r2]
|
||||
#d4 = d2 - d3
|
||||
stdev = d2.std()
|
||||
#print "denoise: stdev of derivative:", stdev
|
||||
mask1 = d2 > stdev*threshold #where derivative is large and positive
|
||||
mask2 = d2 < -stdev*threshold #where derivative is large and negative
|
||||
maskpos = mask1[:-radius] * mask2[radius:] #both need to be true
|
||||
maskneg = mask1[radius:] * mask2[:-radius]
|
||||
mask = maskpos + maskneg
|
||||
d5 = np.where(mask, d1[:-r2], d1[radius:-radius]) #where both are true replace the value with the value from 2 points before
|
||||
d6 = np.empty(d1.shape, dtype=d1.dtype) #add points back to the ends
|
||||
d6[radius:-radius] = d5
|
||||
d6[:radius] = d1[:radius]
|
||||
d6[-radius:] = d1[-radius:]
|
||||
|
||||
if isinstance(data, MetaArray):
|
||||
return MetaArray(d6, info=data.infoCopy())
|
||||
return d6
|
||||
|
||||
def adaptiveDetrend(data, x=None, threshold=3.0):
|
||||
"""Return the signal with baseline removed. Discards outliers from baseline measurement."""
|
||||
if x is None:
|
||||
x = data.xvals(0)
|
||||
|
||||
d = data.view(ndarray)
|
||||
|
||||
d2 = scipy.signal.detrend(d)
|
||||
|
||||
stdev = d2.std()
|
||||
mask = abs(d2) < stdev*threshold
|
||||
#d3 = where(mask, 0, d2)
|
||||
#d4 = d2 - lowPass(d3, cutoffs[1], dt=dt)
|
||||
|
||||
lr = stats.linregress(x[mask], d[mask])
|
||||
base = lr[1] + lr[0]*x
|
||||
d4 = d - base
|
||||
|
||||
if isinstance(data, MetaArray):
|
||||
return MetaArray(d4, info=data.infoCopy())
|
||||
return d4
|
||||
|
||||
|
||||
def histogramDetrend(data, window=500, bins=50, threshold=3.0):
|
||||
"""Linear detrend. Works by finding the most common value at the beginning and end of a trace, excluding outliers."""
|
||||
|
||||
d1 = data.view(np.ndarray)
|
||||
d2 = [d1[:window], d1[-window:]]
|
||||
v = [0, 0]
|
||||
for i in [0, 1]:
|
||||
d3 = d2[i]
|
||||
stdev = d3.std()
|
||||
mask = abs(d3-np.median(d3)) < stdev*threshold
|
||||
d4 = d3[mask]
|
||||
y, x = np.histogram(d4, bins=bins)
|
||||
ind = np.argmax(y)
|
||||
v[i] = 0.5 * (x[ind] + x[ind+1])
|
||||
|
||||
base = np.linspace(v[0], v[1], len(data))
|
||||
d3 = data.view(np.ndarray) - base
|
||||
|
||||
if isinstance(data, MetaArray):
|
||||
return MetaArray(d3, info=data.infoCopy())
|
||||
return d3
|
||||
|
Loading…
x
Reference in New Issue
Block a user