Added functions for

- generating arrow paths
 - solving 3d affine mapping matrix
 - solving 2d bilinear mapping matrix
This commit is contained in:
Luke Campagnola 2012-05-29 23:12:13 -04:00
parent 0f1f6c62e4
commit 2c80098cf6

View File

@ -328,6 +328,35 @@ def glColor(*args, **kargs):
c = mkColor(*args, **kargs)
return (c.red()/255., c.green()/255., c.blue()/255., c.alpha()/255.)
def makeArrowPath(headLen=20, tipAngle=20, tailLen=20, tailWidth=3, baseAngle=0):
"""
Construct a path outlining an arrow with the given dimensions.
The arrow points in the -x direction with tip positioned at 0,0.
If *tipAngle* is supplied (in degrees), it overrides *headWidth*.
If *tailLen* is None, no tail will be drawn.
"""
headWidth = headLen * np.tan(tipAngle * 0.5 * np.pi/180.)
path = QtGui.QPainterPath()
path.moveTo(0,0)
path.lineTo(headLen, -headWidth)
if tailLen is None:
innerY = headLen - headWidth * np.tan(baseAngle*np.pi/180.)
path.lineTo(innerY, 0)
else:
tailWidth *= 0.5
innerY = headLen - (headWidth-tailWidth) * np.tan(baseAngle*np.pi/180.)
path.lineTo(innerY, -tailWidth)
path.lineTo(headLen + tailLen, -tailWidth)
path.lineTo(headLen + tailLen, tailWidth)
path.lineTo(innerY, tailWidth)
path.lineTo(headLen, headWidth)
path.lineTo(0,0)
return path
def affineSlice(data, shape, origin, vectors, axes, **kargs):
"""
Take a slice of any orientation through an array. This is useful for extracting sections of multi-dimensional arrays such as MRI images for viewing as 1D or 2D data.
@ -349,6 +378,8 @@ def affineSlice(data, shape, origin, vectors, axes, **kargs):
*axes*: the axes in the original dataset which correspond to the slice *vectors*
All extra keyword arguments are passed to scipy.ndimage.map_coordinates
Example: start with a 4D fMRI data set, take a diagonal-planar slice out of the last 3 axes
* data = array with dims (time, x, y, z) = (100, 40, 40, 40)
@ -419,8 +450,45 @@ def affineSlice(data, shape, origin, vectors, axes, **kargs):
return output.transpose(tr2)
def solve3DTransform(points1, points2):
"""
Find a 3D transformation matrix that maps points1 onto points2
points must be specified as a list of 4 Vectors.
"""
A = np.array([[points1[i].x(), points1[i].y(), points1[i].z(), 1] for i in range(4)])
B = np.array([[points2[i].x(), points2[i].y(), points2[i].z(), 1] for i in range(4)])
## solve 3 sets of linear equations to determine transformation matrix elements
matrix = np.zeros((4,4))
for i in range(3):
matrix[i] = scipy.linalg.solve(A, B[:,i]) ## solve Ax = B; x is one row of the desired transformation matrix
return matrix
def solveBilinearTransform(points1, points2):
"""
Find a bilinear transformation matrix (2x4) that maps points1 onto points2
points must be specified as a list of 4 Vector, Point, QPointF, etc.
To use this matrix to map a point [x,y]::
mapped = np.dot(matrix, [x*y, x, y, 1])
"""
## A is 4 rows (points) x 4 columns (xy, x, y, 1)
## B is 4 rows (points) x 2 columns (x, y)
A = np.array([[points1[i].x()*points1[i].y(), points1[i].x(), points1[i].y(), 1] for i in range(4)])
B = np.array([[points2[i].x(), points2[i].y()] for i in range(4)])
## solve 2 sets of linear equations to determine transformation matrix elements
matrix = np.zeros((2,4))
for i in range(2):
matrix[i] = scipy.linalg.solve(A, B[:,i]) ## solve Ax = B; x is one row of the desired transformation matrix
return matrix
def makeARGB(data, lut=None, levels=None, useRGBA=False):
"""