Cleaned up some broken flowchart nodes
This commit is contained in:
parent
f8758dba39
commit
394f4d788a
@ -199,6 +199,7 @@ class EvalNode(Node):
|
||||
self.addOutBtn = QtGui.QPushButton('+Output')
|
||||
self.text = QtGui.QTextEdit()
|
||||
self.text.setTabStopWidth(30)
|
||||
self.text.setPlainText("# Access inputs as args['input_name']\nreturn {'output': None} ## one key per output terminal")
|
||||
self.layout.addWidget(self.addInBtn, 0, 0)
|
||||
self.layout.addWidget(self.addOutBtn, 0, 1)
|
||||
self.layout.addWidget(self.text, 1, 0, 1, 2)
|
||||
@ -208,7 +209,7 @@ class EvalNode(Node):
|
||||
self.addInBtn.clicked.connect(self.addInput)
|
||||
#QtCore.QObject.connect(self.addOutBtn, QtCore.SIGNAL('clicked()'), self.addOutput)
|
||||
self.addOutBtn.clicked.connect(self.addOutput)
|
||||
self.ui.focusOutEvent = lambda ev: self.focusOutEvent(ev)
|
||||
self.text.focusOutEvent = self.focusOutEvent
|
||||
self.lastText = None
|
||||
|
||||
def ctrlWidget(self):
|
||||
@ -226,6 +227,7 @@ class EvalNode(Node):
|
||||
self.lastText = text
|
||||
print "eval node update"
|
||||
self.update()
|
||||
return QtGui.QTextEdit.focusOutEvent(self.text, ev)
|
||||
|
||||
def process(self, display=True, **args):
|
||||
l = locals()
|
||||
|
@ -1,187 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from ..Node import Node
|
||||
import functions
|
||||
from common import *
|
||||
|
||||
class Threshold(CtrlNode):
|
||||
"""Absolute threshold detection filter. Returns indexes where data crosses threshold."""
|
||||
nodeName = 'ThresholdDetect'
|
||||
uiTemplate = [
|
||||
('direction', 'combo', {'values': ['rising', 'falling'], 'index': 0}),
|
||||
('threshold', 'spin', {'value': 0, 'step': 1, 'minStep': 1e-12, 'dec': True, 'range': [None, None], 'siPrefix': True}),
|
||||
]
|
||||
|
||||
def __init__(self, name, **opts):
|
||||
CtrlNode.__init__(self, name, self.uiTemplate)
|
||||
|
||||
def processData(self, data):
|
||||
s = self.stateGroup.state()
|
||||
if s['direction'] == 'rising':
|
||||
d = 1
|
||||
else:
|
||||
d = -1
|
||||
return functions.threshold(data, s['threshold'], d)
|
||||
|
||||
class StdevThreshold(CtrlNode):
|
||||
"""Relative threshold event detection. Finds regions in data greater than threshold*stdev.
|
||||
Returns a record array with columns: index, length, sum, peak.
|
||||
This function is only useful for data with its baseline removed."""
|
||||
|
||||
nodeName = 'StdevThreshold'
|
||||
uiTemplate = [
|
||||
('threshold', 'spin', {'value': 0, 'step': 1, 'minStep': 0.1, 'dec': True, 'range': [None, None], 'siPrefix': True}),
|
||||
]
|
||||
|
||||
def __init__(self, name, **opts):
|
||||
CtrlNode.__init__(self, name, self.uiTemplate)
|
||||
|
||||
def processData(self, data):
|
||||
s = self.stateGroup.state()
|
||||
return functions.stdevThresholdEvents(data, s['threshold'])
|
||||
|
||||
|
||||
class ZeroCrossingEvents(CtrlNode):
|
||||
"""Detects events in a waveform by splitting the data up into chunks separated by zero-crossings,
|
||||
then keeping only the ones that meet certain criteria."""
|
||||
nodeName = 'ZeroCrossing'
|
||||
uiTemplate = [
|
||||
('minLength', 'intSpin', {'value': 0, 'min': 0, 'max': 100000}),
|
||||
('minSum', 'spin', {'value': 0, 'step': 1, 'minStep': 0.1, 'dec': True, 'range': [None, None], 'siPrefix': True}),
|
||||
('minPeak', 'spin', {'value': 0, 'step': 1, 'minStep': 0.1, 'dec': True, 'range': [None, None], 'siPrefix': True}),
|
||||
('eventLimit', 'intSpin', {'value': 400, 'min': 1, 'max': 1e9}),
|
||||
]
|
||||
|
||||
def __init__(self, name, **opts):
|
||||
CtrlNode.__init__(self, name, self.uiTemplate)
|
||||
|
||||
def processData(self, data):
|
||||
s = self.stateGroup.state()
|
||||
events = functions.zeroCrossingEvents(data, minLength=s['minLength'], minPeak=s['minPeak'], minSum=s['minSum'])
|
||||
events = events[:s['eventLimit']]
|
||||
return events
|
||||
|
||||
class ThresholdEvents(CtrlNode):
|
||||
"""Detects regions of a waveform that cross a threshold (positive or negative) and returns the time, length, sum, and peak of each event."""
|
||||
nodeName = 'ThresholdEvents'
|
||||
uiTemplate = [
|
||||
('threshold', 'spin', {'value': 1e-12, 'step': 1, 'minStep': 0.1, 'dec': True, 'range': [None, None], 'siPrefix': True, 'tip': 'Events are detected only if they cross this threshold.'}),
|
||||
('adjustTimes', 'check', {'value': True, 'tip': 'If False, then event times are reported where the trace crosses threshold. If True, the event time is adjusted to estimate when the trace would have crossed 0.'}),
|
||||
#('index', 'combo', {'values':['start','peak'], 'index':0}),
|
||||
('minLength', 'intSpin', {'value': 0, 'min': 0, 'max': 1e9, 'tip': 'Events must contain this many samples to be detected.'}),
|
||||
('minSum', 'spin', {'value': 0, 'step': 1, 'minStep': 0.1, 'dec': True, 'range': [None, None], 'siPrefix': True}),
|
||||
('minPeak', 'spin', {'value': 0, 'step': 1, 'minStep': 0.1, 'dec': True, 'range': [None, None], 'siPrefix': True, 'tip': 'Events must reach this threshold to be detected.'}),
|
||||
('eventLimit', 'intSpin', {'value': 100, 'min': 1, 'max': 1e9, 'tip': 'Limits the number of events that may be detected in a single trace. This prevents runaway processes due to over-sensitive detection criteria.'}),
|
||||
('deadTime', 'spin', {'value': 0, 'step': 1, 'minStep': 1e-4, 'range': [0,None], 'siPrefix': True, 'suffix': 's', 'tip': 'Ignore events that occur too quickly following another event.'}),
|
||||
('reverseTime', 'spin', {'value': 0, 'step': 1, 'minStep': 1e-4, 'range': [0,None], 'siPrefix': True, 'suffix': 's', 'tip': 'Ignore events that 1) have the opposite sign of the event immediately prior and 2) occur within the given time window after the prior event. This is useful for ignoring rebound signals.'}),
|
||||
]
|
||||
|
||||
def __init__(self, name, **opts):
|
||||
CtrlNode.__init__(self, name, self.uiTemplate)
|
||||
#self.addOutput('plot')
|
||||
#self.remotePlot = None
|
||||
|
||||
#def connected(self, term, remote):
|
||||
#CtrlNode.connected(self, term, remote)
|
||||
#if term is not self.plot:
|
||||
#return
|
||||
#node = remote.node()
|
||||
#node.sigPlotChanged.connect(self.connectToPlot)
|
||||
#self.connectToPlot(node)
|
||||
|
||||
#def connectToPlot(self, node):
|
||||
#if self.remotePlot is not None:
|
||||
#self.remotePlot = None
|
||||
|
||||
#if node.plot is None:
|
||||
#return
|
||||
#plot = self.plot.
|
||||
|
||||
#def disconnected(self, term, remote):
|
||||
#CtrlNode.disconnected(self, term, remote)
|
||||
#if term is not self.plot:
|
||||
#return
|
||||
#remote.node().sigPlotChanged.disconnect(self.connectToPlot)
|
||||
#self.disconnectFromPlot()
|
||||
|
||||
#def disconnectFromPlot(self):
|
||||
#if self.remotePlot is None:
|
||||
#return
|
||||
#for l in self.lines:
|
||||
#l.scene().removeItem(l)
|
||||
#self.lines = []
|
||||
|
||||
def processData(self, data):
|
||||
s = self.stateGroup.state()
|
||||
events = functions.thresholdEvents(data, s['threshold'], s['adjustTimes'])
|
||||
|
||||
## apply first round of filters
|
||||
mask = events['len'] >= s['minLength']
|
||||
mask *= abs(events['sum']) >= s['minSum']
|
||||
mask *= abs(events['peak']) >= s['minPeak']
|
||||
events = events[mask]
|
||||
|
||||
## apply deadtime filter
|
||||
mask = np.ones(len(events), dtype=bool)
|
||||
last = 0
|
||||
dt = s['deadTime']
|
||||
rt = s['reverseTime']
|
||||
for i in xrange(1, len(events)):
|
||||
tdiff = events[i]['time'] - events[last]['time']
|
||||
if tdiff < dt: ## check dead time
|
||||
mask[i] = False
|
||||
elif tdiff < rt and (events[i]['peak'] * events[last]['peak'] < 0): ## check reverse time
|
||||
mask[i] = False
|
||||
else:
|
||||
last = i
|
||||
#mask[1:] *= (events[1:]['time']-events[:-1]['time']) >= s['deadTime']
|
||||
events = events[mask]
|
||||
|
||||
## limit number of events
|
||||
events = events[:s['eventLimit']]
|
||||
return events
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class SpikeDetector(CtrlNode):
|
||||
"""Very simple spike detector. Returns the indexes of sharp spikes by comparing each sample to its neighbors."""
|
||||
nodeName = "SpikeDetect"
|
||||
uiTemplate = [
|
||||
('radius', 'intSpin', {'value': 1, 'min': 1, 'max': 100000}),
|
||||
('minDiff', 'spin', {'value': 0, 'step': 1, 'minStep': 1e-12, 'dec': True, 'siPrefix': True}),
|
||||
]
|
||||
|
||||
def __init__(self, name, **opts):
|
||||
CtrlNode.__init__(self, name, self.uiTemplate)
|
||||
|
||||
def processData(self, data):
|
||||
s = self.stateGroup.state()
|
||||
radius = s['radius']
|
||||
d1 = data.view(np.ndarray)
|
||||
d2 = data[radius:] - data[:-radius] #a derivative
|
||||
mask1 = d2 > s['minDiff'] #where derivative is large and positive
|
||||
mask2 = d2 < -s['minDiff'] #where derivative is large and negative
|
||||
maskpos = mask1[:-radius] * mask2[radius:] #both need to be true
|
||||
maskneg = mask1[radius:] * mask2[:-radius]
|
||||
mask = maskpos + maskneg ## All regions that match criteria
|
||||
|
||||
## now reduce consecutive hits to a single hit.
|
||||
hits = (mask[1:] - mask[:-1]) > 0
|
||||
sHits = np.argwhere(hits)[:,0]+(radius+2)
|
||||
|
||||
## convert to record array with 'index' column
|
||||
ret = np.empty(len(sHits), dtype=[('index', int), ('time', float)])
|
||||
ret['index'] = sHits
|
||||
ret['time'] = data.xvals('Time')[sHits]
|
||||
return ret
|
||||
|
||||
def processBypassed(self, args):
|
||||
return {'Out': np.empty(0, dtype=[('index', int), ('time', float)])}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -218,3 +218,70 @@ def histogramDetrend(data, window=500, bins=50, threshold=3.0):
|
||||
return MetaArray(d3, info=data.infoCopy())
|
||||
return d3
|
||||
|
||||
def concatenateColumns(data):
|
||||
"""Returns a single record array with columns taken from the elements in data.
|
||||
data should be a list of elements, which can be either record arrays or tuples (name, type, data)
|
||||
"""
|
||||
|
||||
## first determine dtype
|
||||
dtype = []
|
||||
names = set()
|
||||
maxLen = 0
|
||||
for element in data:
|
||||
if isinstance(element, np.ndarray):
|
||||
## use existing columns
|
||||
for i in range(len(element.dtype)):
|
||||
name = element.dtype.names[i]
|
||||
dtype.append((name, element.dtype[i]))
|
||||
maxLen = max(maxLen, len(element))
|
||||
else:
|
||||
name, type, d = element
|
||||
if type is None:
|
||||
type = suggestDType(d)
|
||||
dtype.append((name, type))
|
||||
if isinstance(d, list) or isinstance(d, np.ndarray):
|
||||
maxLen = max(maxLen, len(d))
|
||||
if name in names:
|
||||
raise Exception('Name "%s" repeated' % name)
|
||||
names.add(name)
|
||||
|
||||
|
||||
|
||||
## create empty array
|
||||
out = np.empty(maxLen, dtype)
|
||||
|
||||
## fill columns
|
||||
for element in data:
|
||||
if isinstance(element, np.ndarray):
|
||||
for i in range(len(element.dtype)):
|
||||
name = element.dtype.names[i]
|
||||
try:
|
||||
out[name] = element[name]
|
||||
except:
|
||||
print "Column:", name
|
||||
print "Input shape:", element.shape, element.dtype
|
||||
print "Output shape:", out.shape, out.dtype
|
||||
raise
|
||||
else:
|
||||
name, type, d = element
|
||||
out[name] = d
|
||||
|
||||
return out
|
||||
|
||||
def suggestDType(x):
|
||||
"""Return a suitable dtype for x"""
|
||||
if isinstance(x, list) or isinstance(x, tuple):
|
||||
if len(x) == 0:
|
||||
raise Exception('can not determine dtype for empty list')
|
||||
x = x[0]
|
||||
|
||||
if hasattr(x, 'dtype'):
|
||||
return x.dtype
|
||||
elif isinstance(x, float):
|
||||
return float
|
||||
elif isinstance(x, int) or isinstance(x, long):
|
||||
return int
|
||||
#elif isinstance(x, basestring): ## don't try to guess correct string length; use object instead.
|
||||
#return '<U%d' % len(x)
|
||||
else:
|
||||
return object
|
||||
|
Loading…
x
Reference in New Issue
Block a user