Documentation:

- Added documentation on export system
- Added flowchart documentation and custom node example

Bugfixes: 
- prevent PlotCurveItem drawing shadow when unnecessary
- deprecated flowchart.Node.__getattr__ -- causes too many problems.
This commit is contained in:
Luke Campagnola 2013-01-07 16:14:30 -05:00
commit 79c0ab8ad8
16 changed files with 562 additions and 69 deletions

67
doc/source/exporting.rst Normal file
View File

@ -0,0 +1,67 @@
Exporting
=========
PyQtGraph provides a variety of export formats for all 2D graphics. For 3D graphics, see `Exporting 3D Graphics`_ below.
Exporting from the GUI
----------------------
Any 2D graphics can be exported by right-clicking on the graphic, then selecting 'export' from the context menu.
This will display the export dialog in which the user must:
#. Select an item (or the entire scene) to export. Selecting an item will cause the item to be hilighted in the original
graphic window (but this hilight will not be displayed in the exported file).
#. Select an export format.
#. Change any desired export options.
#. Click the 'export' button.
Export Formats
--------------
* Image - PNG is the default format. The exact set of image formats supported will depend on your Qt libraries. However,
common formats such as PNG, JPG, and TIFF are almost always available.
* SVG - Graphics exported as SVG are targeted to work as well as possible with both Inkscape and
Adobe Illustrator. For high quality SVG export, please use PyQtGraph version 0.9.3 or later.
This is the preferred method for generating publication graphics from PyQtGraph.
* CSV - Exports plotted data as CSV. This exporter _only_ works if a PlotItem is selected for export.
* Matplotlib - This exporter opens a new window and attempts to re-plot the
data using matplotlib (if available). Note that some graphic features are either not implemented
for this exporter or not available in matplotlib. This exporter _only_ works if a PlotItem is selected
for export.
* Printer - Exports to the operating system's printing service. This exporter is provided for completeness,
but is not well supported due to problems with Qt's printing system.
Exporting from the API
----------------------
To export a file programatically, follow this example::
import pyqtgraph as pg
# generate something to export
plt = pg.plot([1,5,2,4,3])
# create an exporter instance, as an argument give it
# the item you wish to export
exporter = pg.exporters.ImageExporter.ImageExporter(plt.plotItem)
# set export parameters if needed
exporter.parameters()['width'] = 100 # (note this also affects height parameter)
# save to file
exporter.export('fileName.png')
Exporting 3D Graphics
---------------------
The exporting functionality described above is not yet available for 3D graphics. However, it is possible to
generate an image from a GLViewWidget by using QGLWidget.grabFrameBuffer or QGLWidget.renderPixmap::
glview.grabFrameBuffer().save('fileName.png')
See the Qt documentation for more information.

View File

@ -0,0 +1,8 @@
flowchart.Flowchart
===================
.. autoclass:: pyqtgraph.flowchart.Flowchart
:members:
.. automethod:: pyqtgraph.flowchart.Flowchart.__init__

View File

@ -0,0 +1,145 @@
Visual Programming with Flowcharts
==================================
PyQtGraph's flowcharts provide a visual programming environment similar in concept to LabView--functional modules are added to a flowchart and connected by wires to define a more complex and arbitrarily configurable algorithm. A small number of predefined modules (called Nodes) are included with pyqtgraph, but most flowchart developers will want to define their own library of Nodes. At their core, the Nodes are little more than 1) a python function 2) a list of input/output terminals, and 3) an optional widget providing a control panel for the Node. Nodes may transmit/receive any type of Python object via their terminals.
One major limitation of flowcharts is that there is no mechanism for looping within a flowchart. (however individual Nodes may contain loops (they may contain any Python code at all), and an entire flowchart may be executed from within a loop).
There are two distinct modes of executing the code in a flowchart:
1. Provide data to the input terminals of the flowchart. This method is slower and will provide a graphical representation of the data as it passes through the flowchart. This is useful for debugging as it allows the user to inspect the data at each terminal and see where exceptions occurred within the flowchart.
2. Call :func:`Flowchart.process() <pyqtgraph.flowchart.Flowchart.process>`. This method does not update the displayed state of the flowchart and only retains the state of each terminal as long as it is needed. Additionally, Nodes which do not contribute to the output values of the flowchart (such as plotting nodes) are ignored. This mode allows for faster processing of large data sets and avoids memory issues which can occur if too much data is present in the flowchart at once (e.g., when processing image data through several stages).
See the flowchart example for more information.
API Reference:
.. toctree::
:maxdepth: 2
flowchart
node
terminal
Basic Use
---------
Flowcharts are most useful in situations where you have a processing stage in your application that you would like to be arbitrarily configurable by the user. Rather than giving a pre-defined algorithm with parameters for the user to tweak, you supply a set of pre-defined functions and allow the user to arrange and connect these functions how they like. A very common example is the use of filter networks in audio / video processing applications.
To begin, you must decide what the input and output variables will be for your flowchart. Create a flowchart with one terminal defined for each variable::
## This example creates just a single input and a single output.
## Flowcharts may define any number of terminals, though.
from pyqtgraph.flowchart import Flowchart
fc = Flowchart(terminals={
'nameOfInputTerminal': {'io': 'in'},
'nameOfOutputTerminal': {'io': 'out'}
})
In the example above, each terminal is defined by a dictionary of options which define the behavior of that terminal (see :func:`Terminal.__init__() <pyqtgraph.flowchart.Terminal.__init__>` for more information and options). Note that Terminals are not typed; any python object may be passed from one Terminal to another.
Once the flowchart is created, add its control widget to your application::
ctrl = fc.ctrlWidget()
myLayout.addWidget(ctrl) ## read Qt docs on QWidget and layouts for more information
The control widget provides several features:
* Displays a list of all nodes in the flowchart containing the control widget for
each node.
* Provides access to the flowchart design window via the 'flowchart' button
* Interface for saving / restoring flowcharts to disk.
At this point your user has the ability to generate flowcharts based on the built-in node library. It is recommended to provide a default set of flowcharts for your users to build from.
All that remains is to process data through the flowchart. As noted above, there are two ways to do this:
.. _processing methods:
1. Set the values of input terminals with :func:`Flowchart.setInput() <pyqtgraph.flowchart.Flowchart.setInput>`, then read the values of output terminals with :func:`Flowchart.output() <pyqtgraph.flowchart.Flowchart.output>`::
fc.setInput(nameOfInputTerminal=newValue)
output = fc.output() # returns {terminalName:value}
This method updates all of the values displayed in the flowchart design window, allowing the user to inspect values at all terminals in the flowchart and indicating the location of errors that occurred during processing.
2. Call :func:`Flowchart.process() <pyqtgraph.flowchart.Flowchart.process>`::
output = fc.process(nameOfInputTerminal=newValue)
This method processes data without updating any of the displayed terminal values. Additionally, all :func:`Node.process() <pyqtgraph.flowchart.Node.process>` methods are called with display=False to request that they not invoke any custom display code. This allows data to be processed both more quickly and with a smaller memory footprint, but errors that occur during Flowchart.process() will be more difficult for the user to diagnose. It is thus recommended to use this method for batch processing through flowcharts that have already been tested and debugged with method 1.
Implementing Custom Nodes
-------------------------
PyQtGraph includes a small library of built-in flowchart nodes. This library is intended to cover some of the most commonly-used functions as well as provide examples for some more exotic Node types. Most applications that use the flowchart system will find the built-in library insufficient and will thus need to implement custom Node classes.
A node subclass implements at least:
1) A list of input / output terminals and their properties
2) A :func:`process() <pyqtgraph.flowchart.Node.process>` function which takes the names of input terminals as keyword arguments and returns a dict with the names of output terminals as keys.
Optionally, a Node subclass can implement the :func:`ctrlWidget() <pyqtgraph.flowchart.Node.ctrlWidget>` method, which must return a QWidget (usually containing other widgets) that will be displayed in the flowchart control panel. A minimal Node subclass looks like::
class SpecialFunctionNode(Node):
"""SpecialFunction: short description
This description will appear in the flowchart design window when the user
selects a node of this type.
"""
nodeName = 'SpecialFunction' # Node type name that will appear to the user.
def __init__(self, name): # all Nodes are provided a unique name when they
# are created.
Node.__init__(self, name, terminals={ # Initialize with a dict
# describing the I/O terminals
# on this Node.
'inputTerminalName': {'io': 'in'},
'anotherInputTerminal': {'io': 'in'},
'outputTerminalName': {'io': 'out'},
})
def process(self, **kwds):
# kwds will have one keyword argument per input terminal.
return {'outputTerminalName': result}
def ctrlWidget(self): # this method is optional
return someQWidget
Some nodes implement fairly complex control widgets, but most nodes follow a simple form-like pattern: a list of parameter names and a single value (represented as spin box, check box, etc..) for each parameter. To make this easier, the :class:`~pyqtgraph.flowchart.library.common.CtrlNode` subclass allows you to instead define a simple data structure that CtrlNode will use to automatically generate the control widget. This is used in many of the built-in library nodes (especially the filters).
There are many other optional parameters for nodes and terminals -- whether the user is allowed to add/remove/rename terminals, whether one terminal may be connected to many others or just one, etc. See the documentation on the :class:`~pyqtgraph.flowchart.Node` and :class:`~pyqtgraph.flowchart.Terminal` classes for more details.
After implementing a new Node subclass, you will most likely want to register the class so that it appears in the menu of Nodes the user can select from::
import pyqtgraph.flowchart.library as fclib
fclib.registerNodeType(SpecialFunctionNode, [('Category', 'Sub-Category')])
The second argument to registerNodeType is a list of tuples, with each tuple describing a menu location in which SpecialFunctionNode should appear.
See the FlowchartCustomNode example for more information.
Debugging Custom Nodes
^^^^^^^^^^^^^^^^^^^^^^
When designing flowcharts or custom Nodes, it is important to set the input of the flowchart with data that at least has the same types and structure as the data you intend to process (see `processing methods`_ #1 above). When you use :func:`Flowchart.setInput() <pyqtgraph.flowchart.Flowchart.setInput>`, the flowchart displays visual feedback in its design window that can tell you what data is present at any terminal and whether there were errors in processing. Nodes that generated errors are displayed with a red border. If you select a Node, its input and output values will be displayed as well as the exception that occurred while the node was processing, if any.
Using Nodes Without Flowcharts
------------------------------
Flowchart Nodes implement a very useful generalization in data processing by combining a function with a GUI for configuring that function. This generalization is useful even outside the context of a flowchart. For example::
## We defined a useful filter Node for use in flowcharts, but would like to
## re-use its processing code and GUI without having a flowchart present.
filterNode = MyFilterNode("filterNodeName")
## get the Node's control widget and place it inside the main window
filterCtrl = filterNode.ctrlWidget()
someLayout.addWidget(filterCtrl)
## later on, process data through the node
filteredData = filterNode.process(inputTerminal=rawData)

View File

@ -0,0 +1,8 @@
flowchart.Node
==============
.. autoclass:: pyqtgraph.flowchart.Node
:members:
.. automethod:: pyqtgraph.flowchart.Node.__init__

View File

@ -0,0 +1,8 @@
flowchart.Terminal
==================
.. autoclass:: pyqtgraph.flowchart.Terminal
:members:
.. automethod:: pyqtgraph.flowchart.Terminal.__init__

View File

@ -20,8 +20,10 @@ Contents:
3dgraphics 3dgraphics
style style
region_of_interest region_of_interest
exporting
prototyping prototyping
parametertree/index parametertree/index
flowchart/index
internals internals
apireference apireference

View File

@ -18,14 +18,8 @@ Visual Programming Flowcharts
Pyqtgraph's flowcharts provide a visual programming environment similar in concept to LabView--functional modules are added to a flowchart and connected by wires to define a more complex and arbitrarily configurable algorithm. A small number of predefined modules (called Nodes) are included with pyqtgraph, but most flowchart developers will want to define their own library of Nodes. At their core, the Nodes are little more than 1) a Python function 2) a list of input/output terminals, and 3) an optional widget providing a control panel for the Node. Nodes may transmit/receive any type of Python object via their terminals. Pyqtgraph's flowcharts provide a visual programming environment similar in concept to LabView--functional modules are added to a flowchart and connected by wires to define a more complex and arbitrarily configurable algorithm. A small number of predefined modules (called Nodes) are included with pyqtgraph, but most flowchart developers will want to define their own library of Nodes. At their core, the Nodes are little more than 1) a Python function 2) a list of input/output terminals, and 3) an optional widget providing a control panel for the Node. Nodes may transmit/receive any type of Python object via their terminals.
One major limitation of flowcharts is that there is no mechanism for looping within a flowchart. (however individual Nodes may contain loops (they may contain any Python code at all), and an entire flowchart may be executed from within a loop). See the `flowchart documentation <flowchart>`_ and the flowchart examples for more information.
There are two distinct modes of executing the code in a flowchart:
1. Provide data to the input terminals of the flowchart. This method is slower and will provide a graphical representation of the data as it passes through the flowchart. This is useful for debugging as it allows the user to inspect the data at each terminal and see where exceptions occurred within the flowchart.
2. Call Flowchart.process. This method does not update the displayed state of the flowchart and only retains the state of each terminal as long as it is needed. Additionally, Nodes which do not contribute to the output values of the flowchart (such as plotting nodes) are ignored. This mode allows for faster processing of large data sets and avoids memory issues which can occur if doo much data is present in the flowchart at once (e.g., when processing image data through several stages).
See the flowchart example for more information.
Graphical Canvas Graphical Canvas
---------------- ----------------

View File

@ -0,0 +1,28 @@
Qt Crash Course
===============
Pyqtgraph makes extensive use of Qt for generating nearly all of its visual output and interfaces. Qt's documentation is very well written and we encourage all pyqtgraph developers to familiarize themselves with it. The purpose of this section is to provide an introduction to programming with Qt (using either PyQt or PySide) for the pyqtgraph developer.
QWidgets and Layouts
--------------------
Signals, Slots, and Events
--------------------------
GraphicsView and GraphicsItems
------------------------------
Coordinate Systems
------------------
Mouse and Keyboard Input
------------------------
QTimer, the Event Loop, and Multi-Threading
-------------------------------------------

View File

@ -21,21 +21,24 @@ import pyqtgraph.metaarray as metaarray
app = QtGui.QApplication([]) app = QtGui.QApplication([])
## Create main window with grid layout
win = QtGui.QMainWindow() win = QtGui.QMainWindow()
cw = QtGui.QWidget() cw = QtGui.QWidget()
win.setCentralWidget(cw) win.setCentralWidget(cw)
layout = QtGui.QGridLayout() layout = QtGui.QGridLayout()
cw.setLayout(layout) cw.setLayout(layout)
## Create flowchart, define input/output terminals
fc = Flowchart(terminals={ fc = Flowchart(terminals={
'dataIn': {'io': 'in'}, 'dataIn': {'io': 'in'},
'dataOut': {'io': 'out'} 'dataOut': {'io': 'out'}
}) })
w = fc.widget() w = fc.widget()
## Add flowchart control panel to the main window
layout.addWidget(fc.widget(), 0, 0, 2, 1) layout.addWidget(fc.widget(), 0, 0, 2, 1)
## Add two plot widgets
pw1 = pg.PlotWidget() pw1 = pg.PlotWidget()
pw2 = pg.PlotWidget() pw2 = pg.PlotWidget()
layout.addWidget(pw1, 0, 1) layout.addWidget(pw1, 0, 1)
@ -43,14 +46,17 @@ layout.addWidget(pw2, 1, 1)
win.show() win.show()
## generate signal data to pass through the flowchart
data = np.random.normal(size=1000) data = np.random.normal(size=1000)
data[200:300] += 1 data[200:300] += 1
data += np.sin(np.linspace(0, 100, 1000)) data += np.sin(np.linspace(0, 100, 1000))
data = metaarray.MetaArray(data, info=[{'name': 'Time', 'values': np.linspace(0, 1.0, len(data))}, {}]) data = metaarray.MetaArray(data, info=[{'name': 'Time', 'values': np.linspace(0, 1.0, len(data))}, {}])
## Feed data into the input terminal of the flowchart
fc.setInput(dataIn=data) fc.setInput(dataIn=data)
## populate the flowchart with a basic set of processing nodes.
## (usually we let the user do this)
pw1Node = fc.createNode('PlotWidget', pos=(0, -150)) pw1Node = fc.createNode('PlotWidget', pos=(0, -150))
pw1Node.setPlot(pw1) pw1Node.setPlot(pw1)
@ -59,42 +65,12 @@ pw2Node.setPlot(pw2)
fNode = fc.createNode('GaussianFilter', pos=(0, 0)) fNode = fc.createNode('GaussianFilter', pos=(0, 0))
fNode.ctrls['sigma'].setValue(5) fNode.ctrls['sigma'].setValue(5)
fc.connectTerminals(fc.dataIn, fNode.In) fc.connectTerminals(fc['dataIn'], fNode['In'])
fc.connectTerminals(fc.dataIn, pw1Node.In) fc.connectTerminals(fc['dataIn'], pw1Node['In'])
fc.connectTerminals(fNode.Out, pw2Node.In) fc.connectTerminals(fNode['Out'], pw2Node['In'])
fc.connectTerminals(fNode.Out, fc.dataOut) fc.connectTerminals(fNode['Out'], fc['dataOut'])
#n1 = fc.createNode('Add', pos=(0,-80))
#n2 = fc.createNode('Subtract', pos=(140,-10))
#n3 = fc.createNode('Abs', pos=(0, 80))
#n4 = fc.createNode('Add', pos=(140,100))
#fc.connectTerminals(fc.dataIn, n1.A)
#fc.connectTerminals(fc.dataIn, n1.B)
#fc.connectTerminals(fc.dataIn, n2.A)
#fc.connectTerminals(n1.Out, n4.A)
#fc.connectTerminals(n1.Out, n2.B)
#fc.connectTerminals(n2.Out, n3.In)
#fc.connectTerminals(n3.Out, n4.B)
#fc.connectTerminals(n4.Out, fc.dataOut)
#def process(**kargs):
#return fc.process(**kargs)
#print process(dataIn=7)
#fc.setInput(dataIn=3)
#s = fc.saveState()
#fc.clear()
#fc.restoreState(s)
#fc.setInput(dataIn=3)
## Start Qt event loop unless running in interactive mode or using pyside. ## Start Qt event loop unless running in interactive mode or using pyside.
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -0,0 +1,144 @@
# -*- coding: utf-8 -*-
"""
This example demonstrates writing a custom Node subclass for use with flowcharts.
We implement a couple of simple image processing nodes.
"""
import initExample ## Add path to library (just for examples; you do not need this)
from pyqtgraph.flowchart import Flowchart, Node
import pyqtgraph.flowchart.library as fclib
from pyqtgraph.flowchart.library.common import CtrlNode
from pyqtgraph.Qt import QtGui, QtCore
import pyqtgraph as pg
import numpy as np
import scipy.ndimage
app = QtGui.QApplication([])
## Create main window with a grid layout inside
win = QtGui.QMainWindow()
cw = QtGui.QWidget()
win.setCentralWidget(cw)
layout = QtGui.QGridLayout()
cw.setLayout(layout)
## Create an empty flowchart with a single input and output
fc = Flowchart(terminals={
'dataIn': {'io': 'in'},
'dataOut': {'io': 'out'}
})
w = fc.widget()
layout.addWidget(fc.widget(), 0, 0, 2, 1)
## Create two ImageView widgets to display the raw and processed data with contrast
## and color control.
v1 = pg.ImageView()
v2 = pg.ImageView()
layout.addWidget(v1, 0, 1)
layout.addWidget(v2, 1, 1)
win.show()
## generate random input data
data = np.random.normal(size=(100,100))
data = 25 * scipy.ndimage.gaussian_filter(data, (5,5))
data += np.random.normal(size=(100,100))
data[40:60, 40:60] += 15.0
data[30:50, 30:50] += 15.0
#data += np.sin(np.linspace(0, 100, 1000))
#data = metaarray.MetaArray(data, info=[{'name': 'Time', 'values': np.linspace(0, 1.0, len(data))}, {}])
## Set the raw data as the input value to the flowchart
fc.setInput(dataIn=data)
## At this point, we need some custom Node classes since those provided in the library
## are not sufficient. Each node will define a set of input/output terminals, a
## processing function, and optionally a control widget (to be displayed in the
## flowchart control panel)
class ImageViewNode(Node):
"""Node that displays image data in an ImageView widget"""
nodeName = 'ImageView'
def __init__(self, name):
self.view = None
## Initialize node with only a single input terminal
Node.__init__(self, name, terminals={'data': {'io':'in'}})
def setView(self, view): ## setView must be called by the program
self.view = view
def process(self, data, display=True):
## if process is called with display=False, then the flowchart is being operated
## in batch processing mode, so we should skip displaying to improve performance.
if display and self.view is not None:
## the 'data' argument is the value given to the 'data' terminal
if data is None:
self.view.setImage(np.zeros((1,1))) # give a blank array to clear the view
else:
self.view.setImage(data)
## register the class so it will appear in the menu of node types.
## It will appear in the 'display' sub-menu.
fclib.registerNodeType(ImageViewNode, [('Display',)])
## We will define an unsharp masking filter node as a subclass of CtrlNode.
## CtrlNode is just a convenience class that automatically creates its
## control widget based on a simple data structure.
class UnsharpMaskNode(CtrlNode):
"""Return the input data passed through scipy.ndimage.gaussian_filter."""
nodeName = "UnsharpMask"
uiTemplate = [
('sigma', 'spin', {'value': 1.0, 'step': 1.0, 'range': [0.0, None]}),
('strength', 'spin', {'value': 1.0, 'dec': True, 'step': 0.5, 'minStep': 0.01, 'range': [0.0, None]}),
]
def __init__(self, name):
## Define the input / output terminals available on this node
terminals = {
'dataIn': dict(io='in'), # each terminal needs at least a name and
'dataOut': dict(io='out'), # to specify whether it is input or output
} # other more advanced options are available
# as well..
CtrlNode.__init__(self, name, terminals=terminals)
def process(self, dataIn, display=True):
# CtrlNode has created self.ctrls, which is a dict containing {ctrlName: widget}
sigma = self.ctrls['sigma'].value()
strength = self.ctrls['strength'].value()
output = dataIn - (strength * scipy.ndimage.gaussian_filter(dataIn, (sigma,sigma)))
return {'dataOut': output}
## register the class so it will appear in the menu of node types.
## It will appear in a new 'image' sub-menu.
fclib.registerNodeType(UnsharpMaskNode, [('Image',)])
## Now we will programmatically add nodes to define the function of the flowchart.
## Normally, the user will do this manually or by loading a pre-generated
## flowchart file.
v1Node = fc.createNode('ImageView', pos=(0, -150))
v1Node.setView(v1)
v2Node = fc.createNode('ImageView', pos=(150, -150))
v2Node.setView(v2)
fNode = fc.createNode('UnsharpMask', pos=(0, 0))
fc.connectTerminals(fc['dataIn'], fNode['dataIn'])
fc.connectTerminals(fc['dataIn'], v1Node['data'])
fc.connectTerminals(fNode['dataOut'], v2Node['data'])
fc.connectTerminals(fNode['dataOut'], fc['dataOut'])
## Start Qt event loop unless running in interactive mode or using pyside.
if __name__ == '__main__':
import sys
if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
QtGui.QApplication.instance().exec_()

View File

@ -67,6 +67,7 @@ examples = OrderedDict([
('GraphicsScene', 'GraphicsScene.py'), ('GraphicsScene', 'GraphicsScene.py'),
('Flowcharts', 'Flowchart.py'), ('Flowcharts', 'Flowchart.py'),
('Custom Flowchart Nodes', 'FlowchartCustomNode.py'),
#('Canvas', '../canvas'), #('Canvas', '../canvas'),
#('MultiPlotWidget', 'MultiPlotWidget.py'), #('MultiPlotWidget', 'MultiPlotWidget.py'),
]) ])

View File

@ -106,6 +106,9 @@ class Flowchart(Node):
self.addTerminal(name, **opts) self.addTerminal(name, **opts)
def setInput(self, **args): def setInput(self, **args):
"""Set the input values of the flowchart. This will automatically propagate
the new values throughout the flowchart, (possibly) causing the output to change.
"""
#print "setInput", args #print "setInput", args
#Node.setInput(self, **args) #Node.setInput(self, **args)
#print " ....." #print " ....."
@ -113,10 +116,15 @@ class Flowchart(Node):
self.inputNode.setOutput(**args) self.inputNode.setOutput(**args)
def outputChanged(self): def outputChanged(self):
self.widget().outputChanged(self.outputNode.inputValues()) ## called when output of internal node has changed
self.sigOutputChanged.emit(self) vals = self.outputNode.inputValues()
self.widget().outputChanged(vals)
self.setOutput(**vals)
#self.sigOutputChanged.emit(self)
def output(self): def output(self):
"""Return a dict of the values on the Flowchart's output terminals.
"""
return self.outputNode.inputValues() return self.outputNode.inputValues()
def nodes(self): def nodes(self):
@ -261,7 +269,9 @@ class Flowchart(Node):
def process(self, **args): def process(self, **args):
""" """
Process data through the flowchart, returning the output. Process data through the flowchart, returning the output.
Keyword arguments must be the names of input terminals
Keyword arguments must be the names of input terminals.
The return value is a dict with one key per output terminal.
""" """
data = {} ## Stores terminal:value pairs data = {} ## Stores terminal:value pairs

View File

@ -13,6 +13,18 @@ def strDict(d):
return dict([(str(k), v) for k, v in d.items()]) return dict([(str(k), v) for k, v in d.items()])
class Node(QtCore.QObject): class Node(QtCore.QObject):
"""
Node represents the basic processing unit of a flowchart.
A Node subclass implements at least:
1) A list of input / ouptut terminals and their properties
2) a process() function which takes the names of input terminals as keyword arguments and returns a dict with the names of output terminals as keys.
A flowchart thus consists of multiple instances of Node subclasses, each of which is connected
to other by wires between their terminals. A flowchart is, itself, also a special subclass of Node.
This allows Nodes within the flowchart to connect to the input/output nodes of the flowchart itself.
Optionally, a node class can implement the ctrlWidget() method, which must return a QWidget (usually containing other widgets) that will be displayed in the flowchart control panel. Some nodes implement fairly complex control widgets, but most nodes follow a simple form-like pattern: a list of parameter names and a single value (represented as spin box, check box, etc..) for each parameter. To make this easier, the CtrlNode subclass allows you to instead define a simple data structure that CtrlNode will use to automatically generate the control widget. """
sigOutputChanged = QtCore.Signal(object) # self sigOutputChanged = QtCore.Signal(object) # self
sigClosed = QtCore.Signal(object) sigClosed = QtCore.Signal(object)
@ -23,6 +35,31 @@ class Node(QtCore.QObject):
def __init__(self, name, terminals=None, allowAddInput=False, allowAddOutput=False, allowRemove=True): def __init__(self, name, terminals=None, allowAddInput=False, allowAddOutput=False, allowRemove=True):
"""
============== ============================================================
Arguments
name The name of this specific node instance. It can be any
string, but must be unique within a flowchart. Usually,
we simply let the flowchart decide on a name when calling
Flowchart.addNode(...)
terminals Dict-of-dicts specifying the terminals present on this Node.
Terminal specifications look like::
'inputTerminalName': {'io': 'in'}
'outputTerminalName': {'io': 'out'}
There are a number of optional parameters for terminals:
multi, pos, renamable, removable, multiable, bypass. See
the Terminal class for more information.
allowAddInput bool; whether the user is allowed to add inputs by the
context menu.
allowAddOutput bool; whether the user is allowed to add outputs by the
context menu.
allowRemove bool; whether the user is allowed to remove this node by the
context menu.
============== ============================================================
"""
QtCore.QObject.__init__(self) QtCore.QObject.__init__(self)
self._name = name self._name = name
self._bypass = False self._bypass = False
@ -52,15 +89,25 @@ class Node(QtCore.QObject):
return name2 return name2
def addInput(self, name="Input", **args): def addInput(self, name="Input", **args):
"""Add a new input terminal to this Node with the given name. Extra
keyword arguments are passed to Terminal.__init__.
This is a convenience function that just calls addTerminal(io='in', ...)"""
#print "Node.addInput called." #print "Node.addInput called."
return self.addTerminal(name, io='in', **args) return self.addTerminal(name, io='in', **args)
def addOutput(self, name="Output", **args): def addOutput(self, name="Output", **args):
"""Add a new output terminal to this Node with the given name. Extra
keyword arguments are passed to Terminal.__init__.
This is a convenience function that just calls addTerminal(io='out', ...)"""
return self.addTerminal(name, io='out', **args) return self.addTerminal(name, io='out', **args)
def removeTerminal(self, term): def removeTerminal(self, term):
## term may be a terminal or its name """Remove the specified terminal from this Node. May specify either the
terminal's name or the terminal itself.
Causes sigTerminalRemoved to be emitted."""
if isinstance(term, Terminal): if isinstance(term, Terminal):
name = term.name() name = term.name()
else: else:
@ -80,7 +127,9 @@ class Node(QtCore.QObject):
def terminalRenamed(self, term, oldName): def terminalRenamed(self, term, oldName):
"""Called after a terminal has been renamed""" """Called after a terminal has been renamed
Causes sigTerminalRenamed to be emitted."""
newName = term.name() newName = term.name()
for d in [self.terminals, self._inputs, self._outputs]: for d in [self.terminals, self._inputs, self._outputs]:
if oldName not in d: if oldName not in d:
@ -92,6 +141,10 @@ class Node(QtCore.QObject):
self.sigTerminalRenamed.emit(term, oldName) self.sigTerminalRenamed.emit(term, oldName)
def addTerminal(self, name, **opts): def addTerminal(self, name, **opts):
"""Add a new terminal to this Node with the given name. Extra
keyword arguments are passed to Terminal.__init__.
Causes sigTerminalAdded to be emitted."""
name = self.nextTerminalName(name) name = self.nextTerminalName(name)
term = Terminal(self, name, **opts) term = Terminal(self, name, **opts)
self.terminals[name] = term self.terminals[name] = term
@ -105,38 +158,60 @@ class Node(QtCore.QObject):
def inputs(self): def inputs(self):
"""Return dict of all input terminals.
Warning: do not modify."""
return self._inputs return self._inputs
def outputs(self): def outputs(self):
"""Return dict of all output terminals.
Warning: do not modify."""
return self._outputs return self._outputs
def process(self, **kargs): def process(self, **kargs):
"""Process data through this node. Each named argument supplies data to the corresponding terminal.""" """Process data through this node. This method is called any time the flowchart
wants the node to process data. It will be called with one keyword argument
corresponding to each input terminal, and must return a dict mapping the name
of each output terminal to its new value.
This method is also called with a 'display' keyword argument, which indicates
whether the node should update its display (if it implements any) while processing
this data. This is primarily used to disable expensive display operations
during batch processing.
"""
return {} return {}
def graphicsItem(self): def graphicsItem(self):
"""Return a (the?) graphicsitem for this node""" """Return the GraphicsItem for this node. Subclasses may re-implement
#print "Node.graphicsItem called." this method to customize their appearance in the flowchart."""
if self._graphicsItem is None: if self._graphicsItem is None:
#print "Creating NodeGraphicsItem..."
self._graphicsItem = NodeGraphicsItem(self) self._graphicsItem = NodeGraphicsItem(self)
#print "Node.graphicsItem is returning ", self._graphicsItem
return self._graphicsItem return self._graphicsItem
## this is just bad planning. Causes too many bugs.
def __getattr__(self, attr): def __getattr__(self, attr):
"""Return the terminal with the given name""" """Return the terminal with the given name"""
if attr not in self.terminals: if attr not in self.terminals:
raise AttributeError(attr) raise AttributeError(attr)
else: else:
import traceback
traceback.print_stack()
print("Warning: use of node.terminalName is deprecated; use node['terminalName'] instead.")
return self.terminals[attr] return self.terminals[attr]
def __getitem__(self, item): def __getitem__(self, item):
return getattr(self, item) #return getattr(self, item)
"""Return the terminal with the given name"""
if item not in self.terminals:
raise KeyError(item)
else:
return self.terminals[item]
def name(self): def name(self):
"""Return the name of this node."""
return self._name return self._name
def rename(self, name): def rename(self, name):
"""Rename this node. This will cause sigRenamed to be emitted."""
oldName = self._name oldName = self._name
self._name = name self._name = name
#self.emit(QtCore.SIGNAL('renamed'), self, oldName) #self.emit(QtCore.SIGNAL('renamed'), self, oldName)
@ -154,15 +229,29 @@ class Node(QtCore.QObject):
return "<Node %s @%x>" % (self.name(), id(self)) return "<Node %s @%x>" % (self.name(), id(self))
def ctrlWidget(self): def ctrlWidget(self):
"""Return this Node's control widget.
By default, Nodes have no control widget. Subclasses may reimplement this
method to provide a custom widget. This method is called by Flowcharts
when they are constructing their Node list."""
return None return None
def bypass(self, byp): def bypass(self, byp):
"""Set whether this node should be bypassed.
When bypassed, a Node's process() method is never called. In some cases,
data is automatically copied directly from specific input nodes to
output nodes instead (see the bypass argument to Terminal.__init__).
This is usually called when the user disables a node from the flowchart
control panel.
"""
self._bypass = byp self._bypass = byp
if self.bypassButton is not None: if self.bypassButton is not None:
self.bypassButton.setChecked(byp) self.bypassButton.setChecked(byp)
self.update() self.update()
def isBypassed(self): def isBypassed(self):
"""Return True if this Node is currently bypassed."""
return self._bypass return self._bypass
def setInput(self, **args): def setInput(self, **args):
@ -179,12 +268,14 @@ class Node(QtCore.QObject):
self.update() self.update()
def inputValues(self): def inputValues(self):
"""Return a dict of all input values currently assigned to this node."""
vals = {} vals = {}
for n, t in self.inputs().items(): for n, t in self.inputs().items():
vals[n] = t.value() vals[n] = t.value()
return vals return vals
def outputValues(self): def outputValues(self):
"""Return a dict of all output values currently generated by this node."""
vals = {} vals = {}
for n, t in self.outputs().items(): for n, t in self.outputs().items():
vals[n] = t.value() vals[n] = t.value()
@ -195,11 +286,15 @@ class Node(QtCore.QObject):
pass pass
def disconnected(self, localTerm, remoteTerm): def disconnected(self, localTerm, remoteTerm):
"""Called whenever one of this node's terminals is connected elsewhere.""" """Called whenever one of this node's terminals is disconnected from another."""
pass pass
def update(self, signal=True): def update(self, signal=True):
"""Collect all input values, attempt to process new output values, and propagate downstream.""" """Collect all input values, attempt to process new output values, and propagate downstream.
Subclasses should call update() whenever thir internal state has changed
(such as when the user interacts with the Node's control widget). Update
is automatically called when the inputs to the node are changed.
"""
vals = self.inputValues() vals = self.inputValues()
#print " inputs:", vals #print " inputs:", vals
try: try:
@ -227,6 +322,9 @@ class Node(QtCore.QObject):
self.sigOutputChanged.emit(self) ## triggers flowchart to propagate new data self.sigOutputChanged.emit(self) ## triggers flowchart to propagate new data
def processBypassed(self, args): def processBypassed(self, args):
"""Called when the flowchart would normally call Node.process, but this node is currently bypassed.
The default implementation looks for output terminals with a bypass connection and returns the
corresponding values. Most Node subclasses will _not_ need to reimplement this method."""
result = {} result = {}
for term in list(self.outputs().values()): for term in list(self.outputs().values()):
byp = term.bypassValue() byp = term.bypassValue()
@ -266,6 +364,13 @@ class Node(QtCore.QObject):
self.graphicsItem().setPen(QtGui.QPen(QtGui.QColor(150, 0, 0), 3)) self.graphicsItem().setPen(QtGui.QPen(QtGui.QColor(150, 0, 0), 3))
def saveState(self): def saveState(self):
"""Return a dictionary representing the current state of this node
(excluding input / output values). This is used for saving/reloading
flowcharts. The default implementation returns this Node's position,
bypass state, and information about each of its terminals.
Subclasses may want to extend this method, adding extra keys to the returned
dict."""
pos = self.graphicsItem().pos() pos = self.graphicsItem().pos()
state = {'pos': (pos.x(), pos.y()), 'bypass': self.isBypassed()} state = {'pos': (pos.x(), pos.y()), 'bypass': self.isBypassed()}
termsEditable = self._allowAddInput | self._allowAddOutput termsEditable = self._allowAddInput | self._allowAddOutput
@ -276,6 +381,8 @@ class Node(QtCore.QObject):
return state return state
def restoreState(self, state): def restoreState(self, state):
"""Restore the state of this node from a structure previously generated
by saveState(). """
pos = state.get('pos', (0,0)) pos = state.get('pos', (0,0))
self.graphicsItem().setPos(*pos) self.graphicsItem().setPos(*pos)
self.bypass(state.get('bypass', False)) self.bypass(state.get('bypass', False))

View File

@ -24,6 +24,8 @@ class Terminal(object):
renamable (bool) Whether the terminal can be renamed by the user renamable (bool) Whether the terminal can be renamed by the user
removable (bool) Whether the terminal can be removed by the user removable (bool) Whether the terminal can be removed by the user
multiable (bool) Whether the user may toggle the *multi* option for this terminal multiable (bool) Whether the user may toggle the *multi* option for this terminal
bypass (str) Name of the terminal from which this terminal's value is derived
when the Node is in bypass mode.
============== ================================================================================= ============== =================================================================================
""" """
self._io = io self._io = io

View File

@ -426,10 +426,12 @@ class PlotCurveItem(GraphicsObject):
p.fillPath(self.fillPath, self.opts['brush']) p.fillPath(self.fillPath, self.opts['brush'])
prof.mark('draw fill path') prof.mark('draw fill path')
sp = fn.mkPen(self.opts['shadowPen'])
cp = fn.mkPen(self.opts['pen'])
## Copy pens and apply alpha adjustment ## Copy pens and apply alpha adjustment
sp = QtGui.QPen(self.opts['shadowPen']) #sp = QtGui.QPen(self.opts['shadowPen'])
cp = QtGui.QPen(self.opts['pen']) #cp = QtGui.QPen(self.opts['pen'])
#for pen in [sp, cp]: #for pen in [sp, cp]:
#if pen is None: #if pen is None:
#continue #continue

View File

@ -379,9 +379,6 @@ class PlotDataItem(GraphicsObject):
def updateItems(self): def updateItems(self):
#for c in self.curves+self.scatters:
#if c.scene() is not None:
#c.scene().removeItem(c)
curveArgs = {} curveArgs = {}
for k,v in [('pen','pen'), ('shadowPen','shadowPen'), ('fillLevel','fillLevel'), ('fillBrush', 'brush'), ('antialias', 'antialias')]: for k,v in [('pen','pen'), ('shadowPen','shadowPen'), ('fillLevel','fillLevel'), ('fillBrush', 'brush'), ('antialias', 'antialias')]:
@ -399,18 +396,12 @@ class PlotDataItem(GraphicsObject):
self.curve.show() self.curve.show()
else: else:
self.curve.hide() self.curve.hide()
#curve = PlotCurveItem(x=x, y=y, **curveArgs)
#curve.setParentItem(self)
#self.curves.append(curve)
if scatterArgs['symbol'] is not None: if scatterArgs['symbol'] is not None:
self.scatter.setData(x=x, y=y, **scatterArgs) self.scatter.setData(x=x, y=y, **scatterArgs)
self.scatter.show() self.scatter.show()
else: else:
self.scatter.hide() self.scatter.hide()
#sp = ScatterPlotItem(x=x, y=y, **scatterArgs)
#sp.setParentItem(self)
#self.scatters.append(sp)
def getData(self): def getData(self):