Merge pull request #1641 from pijyoi/clip_refactor
refactor code to replace np.clip
This commit is contained in:
commit
8e32eeb1a5
@ -997,7 +997,28 @@ def solveBilinearTransform(points1, points2):
|
||||
matrix[i] = numpy.linalg.solve(A, B[:,i]) ## solve Ax = B; x is one row of the desired transformation matrix
|
||||
|
||||
return matrix
|
||||
|
||||
|
||||
|
||||
def clip_array(arr, vmin, vmax, out=None):
|
||||
# replacement for np.clip due to regression in
|
||||
# performance since numpy 1.17
|
||||
# https://github.com/numpy/numpy/issues/14281
|
||||
|
||||
if out is None:
|
||||
out = np.empty_like(arr)
|
||||
|
||||
if vmin is not None:
|
||||
arr = np.core.umath.maximum(arr, vmin, out=out)
|
||||
if vmax is not None:
|
||||
arr = np.core.umath.minimum(arr, vmax, out=out)
|
||||
|
||||
# np.core.umath.clip performs slightly better than
|
||||
# the above on platforms compiled with GCC (e.g. Linux),
|
||||
# but worse for CLANG (e.g. macOS) and MSVC (Windows)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def rescaleData(data, scale, offset, dtype=None, clip=None):
|
||||
"""Return data rescaled and optionally cast to a new dtype.
|
||||
|
||||
@ -1010,16 +1031,12 @@ def rescaleData(data, scale, offset, dtype=None, clip=None):
|
||||
else:
|
||||
dtype = np.dtype(dtype)
|
||||
|
||||
vmin, vmax = None, None
|
||||
if dtype.kind in 'ui':
|
||||
lim = np.iinfo(dtype)
|
||||
if clip is None:
|
||||
# don't let rescale cause integer overflow
|
||||
vmin, vmax = lim.min, lim.max
|
||||
else:
|
||||
vmin, vmax = max(clip[0], lim.min), min(clip[1], lim.max)
|
||||
elif clip is not None:
|
||||
vmin, vmax = clip
|
||||
clip = lim.min, lim.max
|
||||
clip = max(clip[0], lim.min), min(clip[1], lim.max)
|
||||
|
||||
if np.can_cast(data, np.float32):
|
||||
work_dtype = np.float32
|
||||
@ -1030,11 +1047,8 @@ def rescaleData(data, scale, offset, dtype=None, clip=None):
|
||||
d2 *= scale
|
||||
|
||||
# Clip before converting dtype to avoid overflow
|
||||
# regression in np.clip performance since numpy 1.17
|
||||
if vmin is not None:
|
||||
np.core.umath.maximum(d2, vmin, out=d2)
|
||||
if vmax is not None:
|
||||
np.core.umath.minimum(d2, vmax, out=d2)
|
||||
if clip is not None:
|
||||
clip_array(d2, clip[0], clip[1], out=d2)
|
||||
|
||||
# don't copy if no change in dtype
|
||||
data = d2.astype(dtype, copy=False)
|
||||
|
Loading…
x
Reference in New Issue
Block a user