Merge pull request #1641 from pijyoi/clip_refactor
refactor code to replace np.clip
This commit is contained in:
commit
8e32eeb1a5
@ -997,7 +997,28 @@ def solveBilinearTransform(points1, points2):
|
|||||||
matrix[i] = numpy.linalg.solve(A, B[:,i]) ## solve Ax = B; x is one row of the desired transformation matrix
|
matrix[i] = numpy.linalg.solve(A, B[:,i]) ## solve Ax = B; x is one row of the desired transformation matrix
|
||||||
|
|
||||||
return matrix
|
return matrix
|
||||||
|
|
||||||
|
|
||||||
|
def clip_array(arr, vmin, vmax, out=None):
|
||||||
|
# replacement for np.clip due to regression in
|
||||||
|
# performance since numpy 1.17
|
||||||
|
# https://github.com/numpy/numpy/issues/14281
|
||||||
|
|
||||||
|
if out is None:
|
||||||
|
out = np.empty_like(arr)
|
||||||
|
|
||||||
|
if vmin is not None:
|
||||||
|
arr = np.core.umath.maximum(arr, vmin, out=out)
|
||||||
|
if vmax is not None:
|
||||||
|
arr = np.core.umath.minimum(arr, vmax, out=out)
|
||||||
|
|
||||||
|
# np.core.umath.clip performs slightly better than
|
||||||
|
# the above on platforms compiled with GCC (e.g. Linux),
|
||||||
|
# but worse for CLANG (e.g. macOS) and MSVC (Windows)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
def rescaleData(data, scale, offset, dtype=None, clip=None):
|
def rescaleData(data, scale, offset, dtype=None, clip=None):
|
||||||
"""Return data rescaled and optionally cast to a new dtype.
|
"""Return data rescaled and optionally cast to a new dtype.
|
||||||
|
|
||||||
@ -1010,16 +1031,12 @@ def rescaleData(data, scale, offset, dtype=None, clip=None):
|
|||||||
else:
|
else:
|
||||||
dtype = np.dtype(dtype)
|
dtype = np.dtype(dtype)
|
||||||
|
|
||||||
vmin, vmax = None, None
|
|
||||||
if dtype.kind in 'ui':
|
if dtype.kind in 'ui':
|
||||||
lim = np.iinfo(dtype)
|
lim = np.iinfo(dtype)
|
||||||
if clip is None:
|
if clip is None:
|
||||||
# don't let rescale cause integer overflow
|
# don't let rescale cause integer overflow
|
||||||
vmin, vmax = lim.min, lim.max
|
clip = lim.min, lim.max
|
||||||
else:
|
clip = max(clip[0], lim.min), min(clip[1], lim.max)
|
||||||
vmin, vmax = max(clip[0], lim.min), min(clip[1], lim.max)
|
|
||||||
elif clip is not None:
|
|
||||||
vmin, vmax = clip
|
|
||||||
|
|
||||||
if np.can_cast(data, np.float32):
|
if np.can_cast(data, np.float32):
|
||||||
work_dtype = np.float32
|
work_dtype = np.float32
|
||||||
@ -1030,11 +1047,8 @@ def rescaleData(data, scale, offset, dtype=None, clip=None):
|
|||||||
d2 *= scale
|
d2 *= scale
|
||||||
|
|
||||||
# Clip before converting dtype to avoid overflow
|
# Clip before converting dtype to avoid overflow
|
||||||
# regression in np.clip performance since numpy 1.17
|
if clip is not None:
|
||||||
if vmin is not None:
|
clip_array(d2, clip[0], clip[1], out=d2)
|
||||||
np.core.umath.maximum(d2, vmin, out=d2)
|
|
||||||
if vmax is not None:
|
|
||||||
np.core.umath.minimum(d2, vmax, out=d2)
|
|
||||||
|
|
||||||
# don't copy if no change in dtype
|
# don't copy if no change in dtype
|
||||||
data = d2.astype(dtype, copy=False)
|
data = d2.astype(dtype, copy=False)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user