Added documentation on using pyqtgraph as a subpackage.

This commit is contained in:
Luke Campagnola 2013-12-23 15:20:56 -05:00
parent a61b37598b
commit 9ffc172bf7

View File

@ -51,13 +51,13 @@ For the serious application developer, all of the functionality in pyqtgraph is
#. Under "Header file", enter "pyqtgraph".
#. Click "Add", then click "Promote".
See the designer documentation for more information on promoting widgets.
See the designer documentation for more information on promoting widgets. The "VideoSpeedTest" and "ScatterPlotSpeedTest" examples both demonstrate the use of .ui files that are compiled to .py modules using pyuic4 or pyside-uic. The "designerExample" example demonstrates dynamically generating python classes from .ui files (no pyuic4 / pyside-uic needed).
PyQt and PySide
---------------
Pyqtgraph supports two popular python wrappers for the Qt library: PyQt and PySide. Both packages provide nearly identical
PyQtGraph supports two popular python wrappers for the Qt library: PyQt and PySide. Both packages provide nearly identical
APIs and functionality, but for various reasons (discussed elsewhere) you may prefer to use one package or the other. When
pyqtgraph is first imported, it automatically determines which library to use by making the fillowing checks:
@ -71,3 +71,53 @@ make sure it is imported before pyqtgraph::
import PySide ## this will force pyqtgraph to use PySide instead of PyQt4
import pyqtgraph as pg
Embedding PyQtGraph as a sub-package of a larger project
--------------------------------------------------------
When writing applications or python packages that make use of pyqtgraph, it is most common to install pyqtgraph system-wide (or within a virtualenv) and simply call `import pyqtgraph` from within your application. The main benefit to this is that pyqtgraph is configured independently of your application and thus you (or your users) are free to install newer versions of pyqtgraph without changing anything in your application. This is standard practice when developing with python.
However, it is also often the case, especially for scientific applications, that software is written for a very specific purpose and then archived. If we want to ensure that the software will still work ten years later, then it is preferrable to tie the application to a very specific version of pyqtgraph and *avoid* importing the system-installed version of pyqtgraph, which may be much newer (and potentially incompatible). This is especially the case when the application requires site-specific modifications to the pyqtgraph package which may not be present in the main releases.
PyQtGraph facilitates this usage through two mechanisms. First, all internal import statements in pyqtgraph are relative, which allows the package to be renamed or used as a sub-package without any naming conflicts with other versions of pyqtgraph on the system (that is, pyqtgraph never refers to itself internally as 'pyqtgraph'). Second, a git subtree repository is available at https://github.com/pyqtgraph/pyqtgraph-core.git that contains only the 'pyqtgraph/' subtree, allowing the code to be cloned directly as a subtree of the application which uses it.
The basic approach is to clone the repository into the appropriate location in your package. When you import pyqtgraph from within your package, be sure to use the full name to avoid importing any system-installed pyqtgraph packages. For example, imagine a simple project has the following structure::
my_project/
__init__.py
plotting.py
"""Plotting functions used by this package"""
import pyqtgraph as pg
def my_plot_function(*data):
pg.plot(*data)
To embed a specific version of pyqtgraph, we would clone the pyqtgraph-core repository inside the project::
my_project$ git clone github.com/pyqtgraph/pyqtgraph-core.git
Then adjust the import statements accordingly::
my_project/
__init__.py
pyqtgraph/
plotting.py
"""Plotting functions used by this package"""
import my_project.pyqtgraph as pg # be sure to use the local subpackage
# rather than any globally-installed
# versions.
def my_plot_function(*data):
pg.plot(*data)
Use ``git checkout pyqtgraph-core-x.x.x`` to select a specific version of the repository, or use ``git pull`` to pull pyqtgraph updates from upstream (see the git documentation for more information).
For projects that already use git for code control, it is also possible to include pyqtgraph as a git subtree within your own repository. The major advantage to this approach is that, in addition to being able to pull pyqtgraph updates from the upstream repository, it is also possible to commit your local pyqtgraph changes into the project repository and push those changes upstream::
my_project$ git remote add pyqtgraph-core https://github.com/pyqtgraph/pyqtgraph-core.git
my_project$ git fetch pyqtgraph-core
my_project$ git merge -s ours --no-commit pyqtgraph-core/develop
my_project$ mkdir pyqtgraph
my_project$ git read-tree -u --prefix=pyqtgraph/ pyqtgraph-core/develop
my_project$ git commit -m "Added pyqtgraph to project repository"
See the ``git subtree`` documentation for more information.