Bypass makeARGB in some cases (#1786)

* refactor out _ndarray_to_qimage()

* combine levels back with lut

* make use of Grayscale8, RGB888 and Indexed8 QImage formats

Grayscale8 and RGB888 images are those that are ready for display
without further processing.

* add Grayscale16

* apply the efflut early for uint16 mono/rgb, uint8 rgb

* ndarray indexing is faster than np.take

* handle uint16 rgb(a) with no levels same as levels=[0, 65535]

* add support for Format_RGBA64

* fix: support colormaps of shape (h, 1)

* check ImageItem uint8 and uint16 QImage formats

* uint16 mono with rgb lut -> RGBX8888

* got width and height swapped in array dimensions

* set ImageItem as row-major

* no need to form a 1d 32-bit lut for array indexing

you can index (y, x) into a lookup table of shape (nentry, 3) or
(nentry, 4) and get an output of shape (y, x, 3) or (y, x, 4)

* Revert "no need to form a 1d 32-bit lut for array indexing"

This reverts commit 45cf3100de637ed7e53ebb565fbb840ae1534255.

* distinguish between levels_lut and colors_lut

this allows uint16 images with user lut to be rendered as
Format_Indexed8

* uint8 (1-chan) images should always combine to efflut

this efflut will then be used for Indexed8 format color table.

previously, we would be taking a performance hit with doing a numpy
lookup with levels_lut.

* adapt benchmarks/makeARGB.py to renderImageItem.py

* restructure uint8 and uint16 codepaths

* normalize 1-chan images to ndim==2 earlier up

* refactor long code into functions

* bug: qimage may not be assigned

* fix: assign to self.qimage only if not None

* for uint16, do rescale rather than do levels_lut lookup

* cases 2,3 are already handled

i.e. no more using lut to do rescale of uint16 image data.

* rescale rgb images by computation, not by memory lookup

* setImage() does not take an output argument

* try to be cupy compatible

use "xp" instead of numpy module

* add numba to benchmarking

* fix: lut_big is dtype uint8 with more than 256 entries

* bug: applying colors_lut needs C-order

* support float with no nans

* fix: variable could be uninitialized

* add float32 format tests

* avoid explicitly forcing to C-contiguous

* cache effective lut only if combination took place

every one of the four branches now does its own return.
this makes it easier to follow.

* fix cupy benchmark : typo in renderQImage

* remove for loop of 1 iteration

* use float32 for floating point benchmark

* superceded by renderImageItem.py

* lint

* benchmark without lut conversion

* put the lut onto the substrate

* fix editor complaints

* handle lack of cupy

* leading underscores imply privacy

Co-authored-by: KIU Shueng Chuan <nixchuan@gmail.com>
This commit is contained in:
Martin Chase 2021-05-19 17:21:12 -07:00 committed by GitHub
parent 9566e2ba36
commit a91953e93d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 652 additions and 178 deletions

View File

@ -1,130 +0,0 @@
import numpy as np
import pyqtgraph as pg
from pyqtgraph.functions import makeARGB
try:
import cupy as cp
pg.setConfigOption("useCupy", True)
except ImportError:
cp = None
class _TimeSuite(object):
def __init__(self):
super(_TimeSuite, self).__init__()
self.float_data = None
self.uint8_data = None
self.uint8_lut = None
self.uint16_data = None
self.uint16_lut = None
self.output = None
self.cupy_output = None
def setup(self):
size = (self.size, self.size)
self.float_data, self.uint16_data, self.uint8_data, self.uint16_lut, self.uint8_lut = self._create_data(
size, np
)
self.output = np.zeros(size + (4,), dtype=np.ubyte)
makeARGB(self.uint16_data["data"]) # prime the cpu
if cp:
self.cupy_output = cp.zeros(size + (4,), dtype=cp.ubyte)
makeARGB(cp.asarray(self.uint16_data["data"])) # prime the gpu
@staticmethod
def _create_data(size, xp):
float_data = {
"data": xp.random.normal(size=size),
"levels": [-4.0, 4.0],
}
uint16_data = {
"data": xp.random.randint(100, 4500, size=size).astype("uint16"),
"levels": [250, 3000],
}
uint8_data = {
"data": xp.random.randint(0, 255, size=size).astype("ubyte"),
"levels": [20, 220],
}
c_map = xp.array([[-500.0, 255.0], [-255.0, 255.0], [0.0, 500.0]])
uint8_lut = xp.zeros((256, 4), dtype="ubyte")
for i in range(3):
uint8_lut[:, i] = xp.clip(xp.linspace(c_map[i][0], c_map[i][1], 256), 0, 255)
uint8_lut[:, 3] = 255
uint16_lut = xp.zeros((2 ** 16, 4), dtype="ubyte")
for i in range(3):
uint16_lut[:, i] = xp.clip(xp.linspace(c_map[i][0], c_map[i][1], 2 ** 16), 0, 255)
uint16_lut[:, 3] = 255
return float_data, uint16_data, uint8_data, uint16_lut, uint8_lut
def make_test(dtype, use_cupy, use_levels, lut_name, func_name):
def time_test(self):
data = getattr(self, dtype + "_data")
levels = data["levels"] if use_levels else None
lut = getattr(self, lut_name + "_lut", None) if lut_name is not None else None
for _ in range(10):
img_data = data["data"]
output = self.output
if use_cupy:
img_data = cp.asarray(img_data)
output = self.cupy_output
makeARGB(
img_data, lut=lut, levels=levels, output=output,
)
if use_cupy:
output.get(out=self.output)
time_test.__name__ = func_name
return time_test
for cupy in [True, False]:
if cupy and cp is None:
continue
for dtype in ["float", "uint16", "uint8"]:
for levels in [True, False]:
if dtype == "float" and not levels:
continue
for lutname in [None, "uint8", "uint16"]:
name = (
f'time_10x_makeARGB_{"cupy" if cupy else ""}{dtype}_{"" if levels else "no"}levels_{lutname or "no"}lut'
)
setattr(_TimeSuite, name, make_test(dtype, cupy, levels, lutname, name))
class Time0256Suite(_TimeSuite):
def __init__(self):
self.size = 256
super(Time0256Suite, self).__init__()
class Time0512Suite(_TimeSuite):
def __init__(self):
self.size = 512
super(Time0512Suite, self).__init__()
class Time1024Suite(_TimeSuite):
def __init__(self):
self.size = 1024
super(Time1024Suite, self).__init__()
class Time2048Suite(_TimeSuite):
def __init__(self):
self.size = 2048
super(Time2048Suite, self).__init__()
class Time3072Suite(_TimeSuite):
def __init__(self):
self.size = 3072
super(Time3072Suite, self).__init__()
class Time4096Suite(_TimeSuite):
def __init__(self):
self.size = 4096
super(Time4096Suite, self).__init__()

View File

@ -0,0 +1,139 @@
# -*- coding: utf-8 -*-
import numpy as np
import pyqtgraph as pg
try:
import cupy as cp
pg.setConfigOption("useCupy", True)
except ImportError:
cp = None
try:
import numba
except ImportError:
numba = None
def renderQImage(*args, **kwargs):
imgitem = pg.ImageItem(axisOrder='row-major')
if 'autoLevels' not in kwargs:
kwargs['autoLevels'] = False
imgitem.setImage(*args, **kwargs)
imgitem.render()
def prime_numba():
shape = (64, 64)
lut_small = np.random.randint(256, size=(256, 3), dtype=np.uint8)
lut_big = np.random.randint(256, size=(512, 3), dtype=np.uint8)
for lut in [lut_small, lut_big]:
renderQImage(np.zeros(shape, dtype=np.uint8), levels=(20, 220), lut=lut)
renderQImage(np.zeros(shape, dtype=np.uint16), levels=(250, 3000), lut=lut)
renderQImage(np.zeros(shape, dtype=np.float32), levels=(-4.0, 4.0), lut=lut)
class _TimeSuite(object):
def __init__(self):
super(_TimeSuite, self).__init__()
self.size = None
self.float_data = None
self.uint8_data = None
self.uint8_lut = None
self.uint16_data = None
self.uint16_lut = None
self.cupy_uint16_lut = None
self.cupy_uint8_lut = None
def setup(self):
size = (self.size, self.size)
self.float_data, self.uint16_data, self.uint8_data, self.uint16_lut, self.uint8_lut = self._create_data(
size, np
)
if numba is not None:
# ensure JIT compilation
pg.setConfigOption("useNumba", True)
prime_numba()
pg.setConfigOption("useNumba", False)
if cp:
_d1, _d2, _d3, self.cupy_uint16_lut, self.cupy_uint8_lut = self._create_data(size, cp)
renderQImage(cp.asarray(self.uint16_data["data"])) # prime the gpu
@property
def numba_uint16_lut(self):
return self.uint16_lut
@property
def numba_uint8_lut(self):
return self.uint8_lut
@property
def numpy_uint16_lut(self):
return self.uint16_lut
@property
def numpy_uint8_lut(self):
return self.uint8_lut
@staticmethod
def _create_data(size, xp):
float_data = {
"data": xp.random.normal(size=size).astype("float32"),
"levels": [-4.0, 4.0],
}
uint16_data = {
"data": xp.random.randint(100, 4500, size=size).astype("uint16"),
"levels": [250, 3000],
}
uint8_data = {
"data": xp.random.randint(0, 255, size=size).astype("ubyte"),
"levels": [20, 220],
}
c_map = xp.array([[-500.0, 255.0], [-255.0, 255.0], [0.0, 500.0]])
uint8_lut = xp.zeros((256, 4), dtype="ubyte")
for i in range(3):
uint8_lut[:, i] = xp.clip(xp.linspace(c_map[i][0], c_map[i][1], 256), 0, 255)
uint8_lut[:, 3] = 255
uint16_lut = xp.zeros((2 ** 16, 4), dtype="ubyte")
for i in range(3):
uint16_lut[:, i] = xp.clip(xp.linspace(c_map[i][0], c_map[i][1], 2 ** 16), 0, 255)
uint16_lut[:, 3] = 255
return float_data, uint16_data, uint8_data, uint16_lut, uint8_lut
def make_test(dtype, kind, use_levels, lut_name, func_name):
def time_test(self):
data = getattr(self, dtype + "_data")
levels = data["levels"] if use_levels else None
lut = getattr(self, f"{kind}_{lut_name}_lut", None) if lut_name is not None else None
pg.setConfigOption("useNumba", kind == "numba")
img_data = data["data"]
if kind == "cupy":
img_data = cp.asarray(img_data)
renderQImage(img_data, lut=lut, levels=levels)
time_test.__name__ = func_name
return time_test
for option in ["cupy", "numba", "numpy"]:
if option == "cupy" and cp is None:
continue
if option == "numba" and numba is None:
continue
for data_type in ["float", "uint16", "uint8"]:
for lvls in [True, False]:
if data_type == "float" and not lvls:
continue
for lutname in [None, "uint8", "uint16"]:
name = (
f'time_1x_renderImageItem_{option}_{data_type}_{"" if lvls else "no"}levels_{lutname or "no"}lut'
)
setattr(_TimeSuite, name, make_test(data_type, option, lvls, lutname, name))
class Time4096Suite(_TimeSuite):
def __init__(self):
super(Time4096Suite, self).__init__()
self.size = 4096

View File

@ -1390,6 +1390,47 @@ def try_fastpath_argb(xp, ain, aout, useRGBA):
return True
def ndarray_to_qimage(arr, fmt):
"""
Low level function to encapsulate QImage creation differences between bindings.
"arr" is assumed to be C-contiguous.
"""
# C++ QImage has two kind of constructors
# - QImage(const uchar*, ...)
# - QImage(uchar*, ...)
# If the const constructor is used, subsequently calling any non-const method
# will trigger the COW mechanism, i.e. a copy is made under the hood.
if QT_LIB.startswith('PyQt'):
if QtCore.PYQT_VERSION == 0x60000:
# PyQt5 -> const
# PyQt6 >= 6.0.1 -> const
# PyQt6 == 6.0.0 -> non-const
img_ptr = Qt.sip.voidptr(arr)
else:
# PyQt5 -> non-const
# PyQt6 >= 6.0.1 -> non-const
img_ptr = int(Qt.sip.voidptr(arr)) # or arr.ctypes.data
else:
# bindings that support ndarray
# PyQt5 -> const
# PyQt6 >= 6.0.1 -> const
# PySide2 -> non-const
# PySide6 -> non-const
img_ptr = arr
h, w = arr.shape[:2]
bytesPerLine = arr.strides[0]
qimg = QtGui.QImage(img_ptr, w, h, bytesPerLine, fmt)
# Note that the bindings that support ndarray directly already hold a reference
# to it. The manual reference below is only needed for those bindings that take
# in a raw pointer.
qimg.data = arr
return qimg
def makeQImage(imgData, alpha=None, copy=True, transpose=True):
"""
Turn an ARGB array into QImage.
@ -1467,34 +1508,8 @@ def makeQImage(imgData, alpha=None, copy=True, transpose=True):
profile("copy")
# C++ QImage has two kind of constructors
# - QImage(const uchar*, ...)
# - QImage(uchar*, ...)
# If the const constructor is used, subsequently calling any non-const method
# will trigger the COW mechanism, i.e. a copy is made under the hood.
return ndarray_to_qimage(imgData, imgFormat)
if QT_LIB.startswith('PyQt'):
if QtCore.PYQT_VERSION == 0x60000:
# PyQt5 -> const
# PyQt6 >= 6.0.1 -> const
# PyQt6 == 6.0.0 -> non-const
img_ptr = Qt.sip.voidptr(imgData)
else:
# PyQt5 -> non-const
# PyQt6 >= 6.0.1 -> non-const
img_ptr = int(Qt.sip.voidptr(imgData)) # or imgData.ctypes.data
else:
# bindings that support ndarray
# PyQt5 -> const
# PyQt6 >= 6.0.1 -> const
# PySide2 -> non-const
# PySide6 -> non-const
img_ptr = imgData
img = QtGui.QImage(img_ptr, imgData.shape[1], imgData.shape[0], imgFormat)
img.data = imgData
return img
def imageToArray(img, copy=False, transpose=True):
"""

View File

@ -159,11 +159,27 @@ class ImageItem(GraphicsObject):
or :class:`GradientEditorItem <pyqtgraph.GradientEditorItem>`.
"""
if lut is not self.lut:
if self._xp is not None:
lut = self._ensure_proper_substrate(lut, self._xp)
self.lut = lut
self._effectiveLut = None
if update:
self.updateImage()
@staticmethod
def _ensure_proper_substrate(data, substrate):
if data is None or isinstance(data, Callable) or isinstance(data, substrate.ndarray):
return data
cupy = getCupy()
if substrate == cupy and not isinstance(data, cupy.ndarray):
data = cupy.asarray(data)
elif substrate == numpy:
if cupy is not None and isinstance(data, cupy.ndarray):
data = data.get()
else:
data = numpy.asarray(data)
return data
def setAutoDownsample(self, ads):
"""
Set the automatic downsampling mode for this ImageItem.
@ -393,6 +409,7 @@ class ImageItem(GraphicsObject):
# Request a lookup table if this image has only one channel
if self.image.ndim == 2 or self.image.shape[2] == 1:
self.lut = self._ensure_proper_substrate(self.lut, self._xp)
if isinstance(self.lut, Callable):
lut = self.lut(self.image)
else:
@ -416,26 +433,6 @@ class ImageItem(GraphicsObject):
else:
image = self.image
# if the image data is a small int, then we can combine levels + lut
# into a single lut for better performance
levels = self.levels
if levels is not None and lut is not None and levels.ndim == 1 and \
image.dtype in (self._xp.ubyte, self._xp.uint16):
if self._effectiveLut is None:
eflsize = 2**(image.itemsize*8)
ind = self._xp.arange(eflsize)
minlev, maxlev = levels
levdiff = maxlev - minlev
levdiff = 1 if levdiff == 0 else levdiff # don't allow division by 0
lutdtype = self._xp.min_scalar_type(lut.shape[0] - 1)
efflut = fn.rescaleData(ind, scale=(lut.shape[0]-1)/levdiff,
offset=minlev, dtype=lutdtype, clip=(0, lut.shape[0]-1))
efflut = lut[efflut]
self._effectiveLut = efflut
lut = self._effectiveLut
levels = None
# Convert single-channel image to 2D array
if image.ndim == 3 and image.shape[-1] == 1:
image = image[..., 0]
@ -443,7 +440,30 @@ class ImageItem(GraphicsObject):
# Assume images are in column-major order for backward compatibility
# (most images are in row-major order)
if self.axisOrder == 'col-major':
image = image.transpose((1, 0, 2)[:image.ndim])
image = image.swapaxes(0, 1)
levels = self.levels
augmented_alpha = False
if image.dtype.kind == 'f':
image, levels, lut, augmented_alpha = self._try_rescale_float(image, levels, lut)
# if we succeeded, we will have an uint8 image with levels None.
# lut if not None will have <= 256 entries
# if the image data is a small int, then we can combine levels + lut
# into a single lut for better performance
elif image.dtype in (self._xp.ubyte, self._xp.uint16):
image, levels, lut, augmented_alpha = self._try_combine_lut(image, levels, lut)
qimage = self._try_make_qimage(image, levels, lut, augmented_alpha)
if qimage is not None:
self._processingBuffer = None
self._displayBuffer = None
self.qimage = qimage
self._renderRequired = False
self._unrenderable = False
return
if self._processingBuffer is None or self._processingBuffer.shape[:2] != image.shape[:2]:
self._buildQImageBuffer(image.shape)
@ -451,9 +471,243 @@ class ImageItem(GraphicsObject):
fn.makeARGB(image, lut=lut, levels=levels, output=self._processingBuffer)
if self._xp == getCupy():
self._processingBuffer.get(out=self._displayBuffer)
self._renderRequired = False
self._unrenderable = False
def _try_rescale_float(self, image, levels, lut):
xp = self._xp
augmented_alpha = False
can_handle = False
while True:
if levels is None or levels.ndim != 1:
# float images always need levels
# can't handle multi-channel levels
break
# awkward, but fastest numpy native nan evaluation
if xp.isnan(image.min()):
# don't handle images with nans
# this should be an uncommon case
break
can_handle = True
break
if not can_handle:
return image, levels, lut, augmented_alpha
# Decide on maximum scaled value
if lut is not None:
scale = lut.shape[0]
num_colors = lut.shape[0]
else:
scale = 255.
num_colors = 256
dtype = xp.min_scalar_type(num_colors-1)
minVal, maxVal = levels
if minVal == maxVal:
maxVal = xp.nextafter(maxVal, 2*maxVal)
rng = maxVal - minVal
rng = 1 if rng == 0 else rng
image = fn.rescaleData(image, scale/rng, offset=minVal, dtype=dtype, clip=(0, num_colors-1))
levels = None
if image.dtype == xp.uint16 and image.ndim == 2:
image, augmented_alpha = self._apply_lut_for_uint16_mono(image, lut)
lut = None
# image is now of type uint8
return image, levels, lut, augmented_alpha
def _try_combine_lut(self, image, levels, lut):
augmented_alpha = False
xp = self._xp
can_handle = False
while True:
if levels is not None and levels.ndim != 1:
# can't handle multi-channel levels
break
if image.dtype == xp.uint16 and levels is None and \
image.ndim == 3 and image.shape[2] == 3:
# uint16 rgb can't be directly displayed, so make it
# pass through effective lut processing
levels = [0, 65535]
if levels is None and lut is None:
# nothing to combine
break
can_handle = True
break
if not can_handle:
return image, levels, lut, augmented_alpha
# distinguish between lut for levels and colors
levels_lut = None
colors_lut = lut
lut = None
eflsize = 2**(image.itemsize*8)
if levels is None:
info = xp.iinfo(image.dtype)
minlev, maxlev = info.min, info.max
else:
minlev, maxlev = levels
levdiff = maxlev - minlev
levdiff = 1 if levdiff == 0 else levdiff # don't allow division by 0
if colors_lut is None:
if image.dtype == xp.ubyte and image.ndim == 2:
# uint8 mono image
ind = xp.arange(eflsize)
levels_lut = fn.rescaleData(ind, scale=255./levdiff,
offset=minlev, dtype=xp.ubyte)
# image data is not scaled. instead, levels_lut is used
# as (grayscale) Indexed8 ColorTable to get the same effect.
# due to the small size of the input to rescaleData(), we
# do not bother caching the result
return image, None, levels_lut, augmented_alpha
else:
# uint16 mono, uint8 rgb, uint16 rgb
# rescale image data by computation instead of by memory lookup
image = fn.rescaleData(image, scale=255./levdiff,
offset=minlev, dtype=xp.ubyte)
return image, None, colors_lut, augmented_alpha
else:
num_colors = colors_lut.shape[0]
effscale = num_colors / levdiff
lutdtype = xp.min_scalar_type(num_colors - 1)
if image.dtype == xp.ubyte or lutdtype != xp.ubyte:
# combine if either:
# 1) uint8 mono image
# 2) colors_lut has more entries than will fit within 8-bits
if self._effectiveLut is None:
ind = xp.arange(eflsize)
levels_lut = fn.rescaleData(ind, scale=effscale,
offset=minlev, dtype=lutdtype, clip=(0, num_colors-1))
efflut = colors_lut[levels_lut]
levels_lut = None
colors_lut = None
self._effectiveLut = efflut
efflut = self._effectiveLut
# apply the effective lut early for the following types:
if image.dtype == xp.uint16 and image.ndim == 2:
image, augmented_alpha = self._apply_lut_for_uint16_mono(image, efflut)
efflut = None
return image, None, efflut, augmented_alpha
else:
# uint16 image with colors_lut <= 256 entries
# don't combine, we will use QImage ColorTable
image = fn.rescaleData(image, scale=effscale,
offset=minlev, dtype=lutdtype, clip=(0, num_colors-1))
return image, None, colors_lut, augmented_alpha
def _apply_lut_for_uint16_mono(self, image, lut):
# Note: compared to makeARGB(), we have already clipped the data to range
xp = self._xp
augmented_alpha = False
# if lut is 1d, then lut[image] is fastest
# if lut is 2d, then lut.take(image, axis=0) is faster than lut[image]
if not image.flags.c_contiguous:
image = lut.take(image, axis=0)
# if lut had dimensions (N, 1), then our resultant image would
# have dimensions (h, w, 1)
if image.ndim == 3 and image.shape[-1] == 1:
image = image[..., 0]
return image, augmented_alpha
# if we are contiguous, we can take a faster codepath where we
# ensure that the lut is 1d
if lut.ndim == 2:
if lut.shape[1] == 3: # rgb
# convert rgb lut to rgba so that it is 32-bits
lut = xp.column_stack([lut, xp.full(lut.shape[0], 255, dtype=xp.uint8)])
augmented_alpha = True
if lut.shape[1] == 4: # rgba
lut = lut.view(xp.uint32)
image = lut.ravel()[image]
lut = None
# now both levels and lut are None
if image.dtype == xp.uint32:
image = image.view(xp.uint8).reshape(image.shape + (4,))
return image, augmented_alpha
def _try_make_qimage(self, image, levels, lut, augmented_alpha):
xp = self._xp
ubyte_nolvl = image.dtype == xp.ubyte and levels is None
is_passthru8 = ubyte_nolvl and lut is None
is_indexed8 = ubyte_nolvl and image.ndim == 2 and \
lut is not None and lut.shape[0] <= 256
is_passthru16 = image.dtype == xp.uint16 and levels is None and lut is None
can_grayscale16 = is_passthru16 and image.ndim == 2 and \
hasattr(QtGui.QImage.Format, 'Format_Grayscale16')
is_rgba64 = is_passthru16 and image.ndim == 3 and image.shape[2] == 4
# bypass makeARGB for supported combinations
supported = is_passthru8 or is_indexed8 or can_grayscale16 or is_rgba64
if not supported:
return None
if self._xp == getCupy():
image = image.get()
# worthwhile supporting non-contiguous arrays
image = numpy.ascontiguousarray(image)
fmt = None
ctbl = None
if is_passthru8:
# both levels and lut are None
# these images are suitable for display directly
if image.ndim == 2:
fmt = QtGui.QImage.Format.Format_Grayscale8
elif image.shape[2] == 3:
fmt = QtGui.QImage.Format.Format_RGB888
elif image.shape[2] == 4:
if augmented_alpha:
fmt = QtGui.QImage.Format.Format_RGBX8888
else:
fmt = QtGui.QImage.Format.Format_RGBA8888
elif is_indexed8:
# levels and/or lut --> lut-only
fmt = QtGui.QImage.Format.Format_Indexed8
if lut.ndim == 1 or lut.shape[1] == 1:
ctbl = [QtGui.qRgb(x,x,x) for x in lut.ravel().tolist()]
elif lut.shape[1] == 3:
ctbl = [QtGui.qRgb(*rgb) for rgb in lut.tolist()]
elif lut.shape[1] == 4:
ctbl = [QtGui.qRgba(*rgba) for rgba in lut.tolist()]
elif can_grayscale16:
# single channel uint16
# both levels and lut are None
fmt = QtGui.QImage.Format.Format_Grayscale16
elif is_rgba64:
# uint16 rgba
# both levels and lut are None
fmt = QtGui.QImage.Format.Format_RGBA64 # endian-independent
if fmt is None:
raise ValueError("unsupported image type")
qimage = fn.ndarray_to_qimage(image, fmt)
if ctbl is not None:
qimage.setColorTable(ctbl)
return qimage
def paint(self, p, *args):
profile = debug.Profiler()
if self.image is None:

View File

@ -33,6 +33,34 @@ def test_useCupy_can_be_set_after_init():
pg.setConfigOption("useCupy", prev_setting)
@pytest.mark.skipif(cupy is None, reason="CuPy unavailable to test")
def test_ensuring_substrate():
prev_setting = pg.getConfigOption("useCupy")
try:
pg.setConfigOption("useCupy", True)
ii = pg.ImageItem()
data = cupy.random.randint(0, 255, size=(32, 32)).astype(cupy.uint8)
assert data is ii._ensure_proper_substrate(data, cupy)
assert isinstance(ii._ensure_proper_substrate(data, cupy), cupy.ndarray)
assert data is not ii._ensure_proper_substrate(data, np)
assert isinstance(ii._ensure_proper_substrate(data, np), np.ndarray)
data = np.random.randint(0, 255, size=(32, 32)).astype(np.uint8)
assert data is ii._ensure_proper_substrate(data, np)
assert isinstance(ii._ensure_proper_substrate(data, np), np.ndarray)
assert data is not ii._ensure_proper_substrate(data, cupy)
assert isinstance(ii._ensure_proper_substrate(data, cupy), cupy.ndarray)
data = range(0, 255)
assert data is not ii._ensure_proper_substrate(data, np)
assert isinstance(ii._ensure_proper_substrate(data, np), np.ndarray)
assert data is not ii._ensure_proper_substrate(data, cupy)
assert isinstance(ii._ensure_proper_substrate(data, cupy), cupy.ndarray)
finally:
pg.setConfigOption("useCupy", prev_setting)
def test_ImageItem(transpose=False):
w = pg.GraphicsLayoutWidget()
w.show()

View File

@ -0,0 +1,168 @@
import numpy as np
import pyqtgraph as pg
from pyqtgraph.Qt import QtGui
def check_format(shape, dtype, levels, lut, expected_format):
data = np.zeros(shape, dtype=dtype)
item = pg.ImageItem(axisOrder='row-major')
item.setImage(data, autoLevels=False, lut=lut, levels=levels)
item.render()
assert item.qimage.format() == expected_format
def test_uint8():
Format = QtGui.QImage.Format
dtype = np.uint8
w, h = 192, 108
lo, hi = 50, 200
lut_none = None
lut_mono1 = np.random.randint(256, size=256, dtype=np.uint8)
lut_mono2 = np.random.randint(256, size=(256, 1), dtype=np.uint8)
lut_rgb = np.random.randint(256, size=(256, 3), dtype=np.uint8)
lut_rgba = np.random.randint(256, size=(256, 4), dtype=np.uint8)
# lut with less than 256 entries
lut_mono1_s = np.random.randint(256, size=255, dtype=np.uint8)
lut_mono2_s = np.random.randint(256, size=(255, 1), dtype=np.uint8)
lut_rgb_s = np.random.randint(256, size=(255, 3), dtype=np.uint8)
lut_rgba_s = np.random.randint(256, size=(255, 4), dtype=np.uint8)
# lut with more than 256 entries
lut_mono1_l = np.random.randint(256, size=257, dtype=np.uint8)
lut_mono2_l = np.random.randint(256, size=(257, 1), dtype=np.uint8)
lut_rgb_l = np.random.randint(256, size=(257, 3), dtype=np.uint8)
lut_rgba_l = np.random.randint(256, size=(257, 4), dtype=np.uint8)
levels = None
check_format((h, w), dtype, levels, lut_none, Format.Format_Grayscale8)
check_format((h, w, 3), dtype, levels, lut_none, Format.Format_RGB888)
check_format((h, w, 4), dtype, levels, lut_none, Format.Format_RGBA8888)
levels = [lo, hi]
check_format((h, w), dtype, levels, lut_none, Format.Format_Indexed8)
levels = None
check_format((h, w), dtype, levels, lut_mono1, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono2, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgb, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgba, Format.Format_Indexed8)
levels = [lo, hi]
check_format((h, w), dtype, levels, lut_mono1, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono2, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgb, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgba, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono1_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono2_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgb_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgba_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono1_l, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono2_l, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgb_l, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgba_l, Format.Format_Indexed8)
levels = [lo, hi]
check_format((h, w, 3), dtype, levels, lut_none, Format.Format_RGB888)
def test_uint16():
Format = QtGui.QImage.Format
dtype = np.uint16
w, h = 192, 108
lo, hi = 100, 10000
lut_none = None
lut_mono1 = np.random.randint(256, size=256, dtype=np.uint8)
lut_mono2 = np.random.randint(256, size=(256, 1), dtype=np.uint8)
lut_rgb = np.random.randint(256, size=(256, 3), dtype=np.uint8)
lut_rgba = np.random.randint(256, size=(256, 4), dtype=np.uint8)
# lut with less than 256 entries
lut_mono1_s = np.random.randint(256, size=255, dtype=np.uint8)
lut_mono2_s = np.random.randint(256, size=(255, 1), dtype=np.uint8)
lut_rgb_s = np.random.randint(256, size=(255, 3), dtype=np.uint8)
lut_rgba_s = np.random.randint(256, size=(255, 4), dtype=np.uint8)
# lut with more than 256 entries
lut_mono1_l = np.random.randint(256, size=257, dtype=np.uint8)
lut_mono2_l = np.random.randint(256, size=(257, 1), dtype=np.uint8)
lut_rgb_l = np.random.randint(256, size=(257, 3), dtype=np.uint8)
lut_rgba_l = np.random.randint(256, size=(257, 4), dtype=np.uint8)
levels = None
try:
fmt_gray16 = Format.Format_Grayscale16
except AttributeError:
fmt_gray16 = Format.Format_ARGB32
check_format((h, w), dtype, levels, lut_none, fmt_gray16)
check_format((h, w, 3), dtype, levels, lut_none, Format.Format_RGB888)
check_format((h, w, 4), dtype, levels, lut_none, Format.Format_RGBA64)
levels = [lo, hi]
check_format((h, w), dtype, levels, lut_none, Format.Format_Grayscale8)
levels = None
check_format((h, w), dtype, levels, lut_mono1, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono2, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgb, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgba, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono1_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono2_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgb_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgba_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono1_l, Format.Format_Grayscale8)
check_format((h, w), dtype, levels, lut_mono2_l, Format.Format_Grayscale8)
check_format((h, w), dtype, levels, lut_rgb_l, Format.Format_RGBX8888)
check_format((h, w), dtype, levels, lut_rgba_l, Format.Format_RGBA8888)
levels = [lo, hi]
check_format((h, w, 3), dtype, levels, lut_none, Format.Format_RGB888)
def test_float32():
Format = QtGui.QImage.Format
dtype = np.float32
w, h = 192, 108
lo, hi = -1, 1
lut_none = None
lut_mono1 = np.random.randint(256, size=256, dtype=np.uint8)
lut_mono2 = np.random.randint(256, size=(256, 1), dtype=np.uint8)
lut_rgb = np.random.randint(256, size=(256, 3), dtype=np.uint8)
lut_rgba = np.random.randint(256, size=(256, 4), dtype=np.uint8)
# lut with less than 256 entries
lut_mono1_s = np.random.randint(256, size=255, dtype=np.uint8)
lut_mono2_s = np.random.randint(256, size=(255, 1), dtype=np.uint8)
lut_rgb_s = np.random.randint(256, size=(255, 3), dtype=np.uint8)
lut_rgba_s = np.random.randint(256, size=(255, 4), dtype=np.uint8)
# lut with more than 256 entries
lut_mono1_l = np.random.randint(256, size=257, dtype=np.uint8)
lut_mono2_l = np.random.randint(256, size=(257, 1), dtype=np.uint8)
lut_rgb_l = np.random.randint(256, size=(257, 3), dtype=np.uint8)
lut_rgba_l = np.random.randint(256, size=(257, 4), dtype=np.uint8)
levels = [lo, hi]
check_format((h, w), dtype, levels, lut_none, Format.Format_Grayscale8)
check_format((h, w, 3), dtype, levels, lut_none, Format.Format_RGB888)
check_format((h, w, 4), dtype, levels, lut_none, Format.Format_RGBA8888)
check_format((h, w), dtype, levels, lut_mono1, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono2, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgb, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgba, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono1_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono2_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgb_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_rgba_s, Format.Format_Indexed8)
check_format((h, w), dtype, levels, lut_mono1_l, Format.Format_Grayscale8)
check_format((h, w), dtype, levels, lut_mono2_l, Format.Format_Grayscale8)
check_format((h, w), dtype, levels, lut_rgb_l, Format.Format_RGBX8888)
check_format((h, w), dtype, levels, lut_rgba_l, Format.Format_RGBA8888)