Merge branch 'fix-interpolate' into develop
This commit is contained in:
commit
baefdd0880
@ -2,6 +2,7 @@ pyqtgraph-0.9.11 [unreleased]
|
||||
|
||||
Bugfixes:
|
||||
- Fixed git version string generation on python3
|
||||
- Fixed setting default values for out-of-bound points in pg.interpolateArray
|
||||
|
||||
pyqtgraph-0.9.10
|
||||
|
||||
|
@ -447,11 +447,9 @@ def affineSlice(data, shape, origin, vectors, axes, order=1, returnCoords=False,
|
||||
|
||||
## Build array of sample locations.
|
||||
grid = np.mgrid[tuple([slice(0,x) for x in shape])] ## mesh grid of indexes
|
||||
#print shape, grid.shape
|
||||
x = (grid[np.newaxis,...] * vectors.transpose()[(Ellipsis,) + (np.newaxis,)*len(shape)]).sum(axis=1) ## magic
|
||||
x += origin
|
||||
#print "X values:"
|
||||
#print x
|
||||
|
||||
## iterate manually over unused axes since map_coordinates won't do it for us
|
||||
if have_scipy:
|
||||
extraShape = data.shape[len(axes):]
|
||||
@ -464,7 +462,6 @@ def affineSlice(data, shape, origin, vectors, axes, order=1, returnCoords=False,
|
||||
# interpolateArray expects indexes at the last axis.
|
||||
tr = tuple(range(1,x.ndim)) + (0,)
|
||||
output = interpolateArray(data, x.transpose(tr))
|
||||
|
||||
|
||||
tr = list(range(output.ndim))
|
||||
trb = []
|
||||
@ -483,7 +480,7 @@ def affineSlice(data, shape, origin, vectors, axes, order=1, returnCoords=False,
|
||||
|
||||
def interpolateArray(data, x, default=0.0):
|
||||
"""
|
||||
N-dimensional interpolation similar scipy.ndimage.map_coordinates.
|
||||
N-dimensional interpolation similar to scipy.ndimage.map_coordinates.
|
||||
|
||||
This function returns linearly-interpolated values sampled from a regular
|
||||
grid of data.
|
||||
@ -492,7 +489,7 @@ def interpolateArray(data, x, default=0.0):
|
||||
*x* is an array with (shape[-1] <= data.ndim) containing the locations
|
||||
within *data* to interpolate.
|
||||
|
||||
Returns array of shape (x.shape[:-1] + data.shape)
|
||||
Returns array of shape (x.shape[:-1] + data.shape[x.shape[-1]:])
|
||||
|
||||
For example, assume we have the following 2D image data::
|
||||
|
||||
@ -535,11 +532,12 @@ def interpolateArray(data, x, default=0.0):
|
||||
|
||||
This is useful for interpolating from arrays of colors, vertexes, etc.
|
||||
"""
|
||||
|
||||
prof = debug.Profiler()
|
||||
|
||||
nd = data.ndim
|
||||
md = x.shape[-1]
|
||||
if md > nd:
|
||||
raise TypeError("x.shape[-1] must be less than or equal to data.ndim")
|
||||
|
||||
# First we generate arrays of indexes that are needed to
|
||||
# extract the data surrounding each point
|
||||
@ -552,21 +550,19 @@ def interpolateArray(data, x, default=0.0):
|
||||
for ax in range(md):
|
||||
mask = (xmin[...,ax] >= 0) & (x[...,ax] <= data.shape[ax]-1)
|
||||
# keep track of points that need to be set to default
|
||||
totalMask &= mask
|
||||
totalMask &= mask
|
||||
|
||||
# ..and keep track of indexes that are out of bounds
|
||||
# (note that when x[...,ax] == data.shape[ax], then xmax[...,ax] will be out
|
||||
# of bounds, but the interpolation will work anyway)
|
||||
mask &= (xmax[...,ax] < data.shape[ax])
|
||||
axisIndex = indexes[...,ax][fields[ax]]
|
||||
#axisMask = mask.astype(np.ubyte).reshape((1,)*(fields.ndim-1) + mask.shape)
|
||||
axisIndex[axisIndex < 0] = 0
|
||||
axisIndex[axisIndex >= data.shape[ax]] = 0
|
||||
fieldInds.append(axisIndex)
|
||||
prof()
|
||||
|
||||
|
||||
# Get data values surrounding each requested point
|
||||
# fieldData[..., i] contains all 2**nd values needed to interpolate x[i]
|
||||
fieldData = data[tuple(fieldInds)]
|
||||
prof()
|
||||
|
||||
@ -585,8 +581,13 @@ def interpolateArray(data, x, default=0.0):
|
||||
result = result.sum(axis=0)
|
||||
|
||||
prof()
|
||||
totalMask.shape = totalMask.shape + (1,) * (nd - md)
|
||||
result[~totalMask] = default
|
||||
|
||||
if totalMask.ndim > 0:
|
||||
result[~totalMask] = default
|
||||
else:
|
||||
if totalMask is False:
|
||||
result[:] = default
|
||||
|
||||
prof()
|
||||
return result
|
||||
|
||||
|
@ -1061,8 +1061,8 @@ class ROI(GraphicsObject):
|
||||
=================== ====================================================
|
||||
|
||||
This method uses :func:`affineSlice <pyqtgraph.affineSlice>` to generate
|
||||
the slice from *data* and uses :func:`getAffineSliceParams <pyqtgraph.ROI.getAffineSliceParams>` to determine the parameters to
|
||||
pass to :func:`affineSlice <pyqtgraph.affineSlice>`.
|
||||
the slice from *data* and uses :func:`getAffineSliceParams <pyqtgraph.ROI.getAffineSliceParams>`
|
||||
to determine the parameters to pass to :func:`affineSlice <pyqtgraph.affineSlice>`.
|
||||
|
||||
If *returnMappedCoords* is True, then the method returns a tuple (result, coords)
|
||||
such that coords is the set of coordinates used to interpolate values from the original
|
||||
@ -1079,24 +1079,16 @@ class ROI(GraphicsObject):
|
||||
else:
|
||||
kwds['returnCoords'] = True
|
||||
result, coords = fn.affineSlice(data, shape=shape, vectors=vectors, origin=origin, axes=axes, **kwds)
|
||||
#tr = fn.transformToArray(img.transform())[:2] ## remove perspective transform values
|
||||
|
||||
### separate translation from scale/rotate
|
||||
#translate = tr[:,2]
|
||||
#tr = tr[:,:2]
|
||||
#tr = tr.reshape((2,2) + (1,)*(coords.ndim-1))
|
||||
#coords = coords[np.newaxis, ...]
|
||||
|
||||
### map coordinates and return
|
||||
#mapped = (tr*coords).sum(axis=0) ## apply scale/rotate
|
||||
#mapped += translate.reshape((2,1,1))
|
||||
mapped = fn.transformCoordinates(img.transform(), coords)
|
||||
return result, mapped
|
||||
|
||||
def getAffineSliceParams(self, data, img, axes=(0,1)):
|
||||
"""
|
||||
Returns the parameters needed to use :func:`affineSlice <pyqtgraph.affineSlice>` to
|
||||
extract a subset of *data* using this ROI and *img* to specify the subset.
|
||||
Returns the parameters needed to use :func:`affineSlice <pyqtgraph.affineSlice>`
|
||||
(shape, vectors, origin) to extract a subset of *data* using this ROI
|
||||
and *img* to specify the subset.
|
||||
|
||||
See :func:`getArrayRegion <pyqtgraph.ROI.getArrayRegion>` for more information.
|
||||
"""
|
||||
@ -1138,8 +1130,6 @@ class ROI(GraphicsObject):
|
||||
relativeTo['scale'] = relativeTo['size']
|
||||
st['scale'] = st['size']
|
||||
|
||||
|
||||
|
||||
t1 = SRTTransform(relativeTo)
|
||||
t2 = SRTTransform(st)
|
||||
return t2/t1
|
||||
|
@ -1,6 +1,7 @@
|
||||
import pyqtgraph as pg
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_almost_equal, assert_almost_equal
|
||||
import pytest
|
||||
|
||||
np.random.seed(12345)
|
||||
|
||||
@ -22,18 +23,39 @@ def testSolve3D():
|
||||
|
||||
|
||||
def test_interpolateArray():
|
||||
def interpolateArray(data, x):
|
||||
result = pg.interpolateArray(data, x)
|
||||
assert result.shape == x.shape[:-1] + data.shape[x.shape[-1]:]
|
||||
return result
|
||||
|
||||
data = np.array([[ 1., 2., 4. ],
|
||||
[ 10., 20., 40. ],
|
||||
[ 100., 200., 400.]])
|
||||
|
||||
# test various x shapes
|
||||
interpolateArray(data, np.ones((1,)))
|
||||
interpolateArray(data, np.ones((2,)))
|
||||
interpolateArray(data, np.ones((1, 1)))
|
||||
interpolateArray(data, np.ones((1, 2)))
|
||||
interpolateArray(data, np.ones((5, 1)))
|
||||
interpolateArray(data, np.ones((5, 2)))
|
||||
interpolateArray(data, np.ones((5, 5, 1)))
|
||||
interpolateArray(data, np.ones((5, 5, 2)))
|
||||
with pytest.raises(TypeError):
|
||||
interpolateArray(data, np.ones((3,)))
|
||||
with pytest.raises(TypeError):
|
||||
interpolateArray(data, np.ones((1, 3,)))
|
||||
with pytest.raises(TypeError):
|
||||
interpolateArray(data, np.ones((5, 5, 3,)))
|
||||
|
||||
|
||||
x = np.array([[ 0.3, 0.6],
|
||||
[ 1. , 1. ],
|
||||
[ 0.5, 1. ],
|
||||
[ 0.5, 2.5],
|
||||
[ 10. , 10. ]])
|
||||
|
||||
result = pg.interpolateArray(data, x)
|
||||
|
||||
result = interpolateArray(data, x)
|
||||
#import scipy.ndimage
|
||||
#spresult = scipy.ndimage.map_coordinates(data, x.T, order=1)
|
||||
spresult = np.array([ 5.92, 20. , 11. , 0. , 0. ]) # generated with the above line
|
||||
@ -44,9 +66,10 @@ def test_interpolateArray():
|
||||
x = np.array([[ 0.3, 0],
|
||||
[ 0.3, 1],
|
||||
[ 0.3, 2]])
|
||||
r1 = interpolateArray(data, x)
|
||||
x = np.array([0.3]) # should broadcast across axis 1
|
||||
r2 = interpolateArray(data, x)
|
||||
|
||||
r1 = pg.interpolateArray(data, x)
|
||||
r2 = pg.interpolateArray(data, x[0,:1])
|
||||
assert_array_almost_equal(r1, r2)
|
||||
|
||||
|
||||
@ -54,13 +77,25 @@ def test_interpolateArray():
|
||||
x = np.array([[[0.5, 0.5], [0.5, 1.0], [0.5, 1.5]],
|
||||
[[1.5, 0.5], [1.5, 1.0], [1.5, 1.5]]])
|
||||
|
||||
r1 = pg.interpolateArray(data, x)
|
||||
r1 = interpolateArray(data, x)
|
||||
#r2 = scipy.ndimage.map_coordinates(data, x.transpose(2,0,1), order=1)
|
||||
r2 = np.array([[ 8.25, 11. , 16.5 ], # generated with the above line
|
||||
[ 82.5 , 110. , 165. ]])
|
||||
|
||||
assert_array_almost_equal(r1, r2)
|
||||
|
||||
|
||||
# test interpolate where data.ndim > x.shape[1]
|
||||
|
||||
data = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) # 2x2x3
|
||||
x = np.array([[1, 1], [0, 0.5], [5, 5]])
|
||||
|
||||
r1 = interpolateArray(data, x)
|
||||
assert np.all(r1[0] == data[1, 1])
|
||||
assert np.all(r1[1] == 0.5 * (data[0, 0] + data[0, 1]))
|
||||
assert np.all(r1[2] == 0)
|
||||
|
||||
|
||||
def test_subArray():
|
||||
a = np.array([0, 0, 111, 112, 113, 0, 121, 122, 123, 0, 0, 0, 211, 212, 213, 0, 221, 222, 223, 0, 0, 0, 0])
|
||||
b = pg.subArray(a, offset=2, shape=(2,2,3), stride=(10,4,1))
|
||||
|
Loading…
x
Reference in New Issue
Block a user