Merge branch 'cylinder_mesh' into develop
Adds MeshData.cylinder
This commit is contained in:
commit
d45467e4cb
@ -34,6 +34,7 @@ pyqtgraph-0.9.9 [unreleased]
|
||||
- MultiPlotWidget now has setMinimumPlotHeight method and displays scroll bar
|
||||
when plots do not fit inside the widget.
|
||||
- Added BarGraphItem.shape() to allow better mouse interaction
|
||||
- Added MeshData.cylinder
|
||||
|
||||
Bugfixes:
|
||||
- PlotCurveItem now has correct clicking behavior--clicks within a few px
|
||||
|
@ -67,7 +67,7 @@ w.addItem(m2)
|
||||
|
||||
|
||||
## Example 3:
|
||||
## icosahedron
|
||||
## sphere
|
||||
|
||||
md = gl.MeshData.sphere(rows=10, cols=20)
|
||||
#colors = np.random.random(size=(md.faceCount(), 4))
|
||||
@ -79,7 +79,7 @@ colors[:,1] = np.linspace(0, 1, colors.shape[0])
|
||||
md.setFaceColors(colors)
|
||||
m3 = gl.GLMeshItem(meshdata=md, smooth=False)#, shader='balloon')
|
||||
|
||||
#m3.translate(-5, -5, 0)
|
||||
m3.translate(-5, -5, 0)
|
||||
w.addItem(m3)
|
||||
|
||||
|
||||
@ -91,49 +91,68 @@ m4 = gl.GLMeshItem(meshdata=md, smooth=False, drawFaces=False, drawEdges=True, e
|
||||
m4.translate(0,10,0)
|
||||
w.addItem(m4)
|
||||
|
||||
# Example 5:
|
||||
# cylinder
|
||||
md = gl.MeshData.cylinder(rows=10, cols=20, radius=[1., 2.0], length=5.)
|
||||
md2 = gl.MeshData.cylinder(rows=10, cols=20, radius=[2., 0.5], length=10.)
|
||||
colors = np.ones((md.faceCount(), 4), dtype=float)
|
||||
colors[::2,0] = 0
|
||||
colors[:,1] = np.linspace(0, 1, colors.shape[0])
|
||||
md.setFaceColors(colors)
|
||||
m5 = gl.GLMeshItem(meshdata=md, smooth=True, drawEdges=True, edgeColor=(1,0,0,1), shader='balloon')
|
||||
colors = np.ones((md.faceCount(), 4), dtype=float)
|
||||
colors[::2,0] = 0
|
||||
colors[:,1] = np.linspace(0, 1, colors.shape[0])
|
||||
md2.setFaceColors(colors)
|
||||
m6 = gl.GLMeshItem(meshdata=md2, smooth=True, drawEdges=False, shader='balloon')
|
||||
m6.translate(0,0,7.5)
|
||||
|
||||
m6.rotate(0., 0, 1, 1)
|
||||
#m5.translate(-3,3,0)
|
||||
w.addItem(m5)
|
||||
w.addItem(m6)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#def psi(i, j, k, offset=(25, 25, 50)):
|
||||
#x = i-offset[0]
|
||||
#y = j-offset[1]
|
||||
#z = k-offset[2]
|
||||
#th = np.arctan2(z, (x**2+y**2)**0.5)
|
||||
#phi = np.arctan2(y, x)
|
||||
#r = (x**2 + y**2 + z **2)**0.5
|
||||
#a0 = 1
|
||||
##ps = (1./81.) * (2./np.pi)**0.5 * (1./a0)**(3/2) * (6 - r/a0) * (r/a0) * np.exp(-r/(3*a0)) * np.cos(th)
|
||||
#ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1)
|
||||
def psi(i, j, k, offset=(25, 25, 50)):
|
||||
x = i-offset[0]
|
||||
y = j-offset[1]
|
||||
z = k-offset[2]
|
||||
th = np.arctan2(z, (x**2+y**2)**0.5)
|
||||
phi = np.arctan2(y, x)
|
||||
r = (x**2 + y**2 + z **2)**0.5
|
||||
a0 = 1
|
||||
#ps = (1./81.) * (2./np.pi)**0.5 * (1./a0)**(3/2) * (6 - r/a0) * (r/a0) * np.exp(-r/(3*a0)) * np.cos(th)
|
||||
ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1)
|
||||
|
||||
#return ps
|
||||
return ps
|
||||
|
||||
##return ((1./81.) * (1./np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * (r/a0) * np.exp(-r/(3*a0)) * np.sin(th) * np.cos(th) * np.exp(2 * 1j * phi))**2
|
||||
#return ((1./81.) * (1./np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * (r/a0) * np.exp(-r/(3*a0)) * np.sin(th) * np.cos(th) * np.exp(2 * 1j * phi))**2
|
||||
|
||||
|
||||
#print("Generating scalar field..")
|
||||
#data = np.abs(np.fromfunction(psi, (50,50,100)))
|
||||
print("Generating scalar field..")
|
||||
data = np.abs(np.fromfunction(psi, (50,50,100)))
|
||||
|
||||
|
||||
##data = np.fromfunction(lambda i,j,k: np.sin(0.2*((i-25)**2+(j-15)**2+k**2)**0.5), (50,50,50));
|
||||
#print("Generating isosurface..")
|
||||
#verts = pg.isosurface(data, data.max()/4.)
|
||||
|
||||
#md = gl.MeshData.MeshData(vertexes=verts)
|
||||
|
||||
#colors = np.ones((md.vertexes(indexed='faces').shape[0], 4), dtype=float)
|
||||
#colors[:,3] = 0.3
|
||||
#colors[:,2] = np.linspace(0, 1, colors.shape[0])
|
||||
#m1 = gl.GLMeshItem(meshdata=md, color=colors, smooth=False)
|
||||
|
||||
#w.addItem(m1)
|
||||
#m1.translate(-25, -25, -20)
|
||||
|
||||
#m2 = gl.GLMeshItem(vertexes=verts, color=colors, smooth=True)
|
||||
|
||||
#w.addItem(m2)
|
||||
#m2.translate(-25, -25, -50)
|
||||
#data = np.fromfunction(lambda i,j,k: np.sin(0.2*((i-25)**2+(j-15)**2+k**2)**0.5), (50,50,50));
|
||||
# print("Generating isosurface..")
|
||||
# verts = pg.isosurface(data, data.max()/4.)
|
||||
# print dir(gl.MeshData)
|
||||
# md = gl.GLMeshItem(vertexes=verts)
|
||||
#
|
||||
# colors = np.ones((md.vertexes(indexed='faces').shape[0], 4), dtype=float)
|
||||
# colors[:,3] = 0.3
|
||||
# colors[:,2] = np.linspace(0, 1, colors.shape[0])
|
||||
# m1 = gl.GLMeshItem(meshdata=md, color=colors, smooth=False)
|
||||
#
|
||||
# w.addItem(m1)
|
||||
# m1.translate(-25, -25, -20)
|
||||
#
|
||||
# m2 = gl.GLMeshItem(vertexes=verts, color=colors, smooth=True)
|
||||
#
|
||||
# w.addItem(m2)
|
||||
# m2.translate(-25, -25, -50)
|
||||
|
||||
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
from ..Qt import QtGui
|
||||
from .. import functions as fn
|
||||
from pyqtgraph.Qt import QtGui
|
||||
import pyqtgraph.functions as fn
|
||||
import numpy as np
|
||||
|
||||
class MeshData(object):
|
||||
@ -518,4 +518,36 @@ class MeshData(object):
|
||||
|
||||
return MeshData(vertexes=verts, faces=faces)
|
||||
|
||||
@staticmethod
|
||||
def cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False, ends=False):
|
||||
"""
|
||||
Return a MeshData instance with vertexes and faces computed
|
||||
for a cylindrical surface.
|
||||
The cylinder may be tapered with different radii at each end (truncated cone)
|
||||
ends are open if ends = False
|
||||
No closed ends implemented yet...
|
||||
The easiest way may be to add a vertex at the top and bottom in the center of the face?
|
||||
"""
|
||||
verts = np.empty((rows+1, cols, 3), dtype=float)
|
||||
if isinstance(radius, int):
|
||||
radius = [radius, radius] # convert to list
|
||||
## compute vertexes
|
||||
th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols)) # angle around
|
||||
r = (np.linspace(radius[0],radius[1],num=rows+1, endpoint=True)).reshape(rows+1, 1) # radius as a function of z
|
||||
verts[...,2] = np.linspace(-length/2.0, length/2.0, num=rows+1, endpoint=True).reshape(rows+1, 1) # z
|
||||
if offset:
|
||||
th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column
|
||||
verts[...,0] = r * np.cos(th) # x = r cos(th)
|
||||
verts[...,1] = r * np.sin(th) # y = r sin(th)
|
||||
verts = verts.reshape((rows+1)*cols, 3) # just reshape: no redundant vertices...
|
||||
## compute faces
|
||||
faces = np.empty((rows*cols*2, 3), dtype=np.uint)
|
||||
rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
|
||||
rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
|
||||
for row in range(rows):
|
||||
start = row * cols * 2
|
||||
faces[start:start+cols] = rowtemplate1 + row * cols
|
||||
faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
|
||||
|
||||
return MeshData(vertexes=verts, faces=faces)
|
||||
|
Loading…
Reference in New Issue
Block a user