Add a faster method for computing pseudoscatter
This commit is contained in:
parent
cf3c294899
commit
dc9aa84ce3
@ -2311,14 +2311,62 @@ def invertQTransform(tr):
|
||||
raise Exception("Transform is not invertible.")
|
||||
return inv[0]
|
||||
|
||||
|
||||
def pseudoScatter(data, spacing=None, shuffle=True, bidir=False, method='exact'):
|
||||
"""Return an array of position values needed to make beeswarm or column scatter plots.
|
||||
|
||||
def pseudoScatter(data, spacing=None, shuffle=True, bidir=False):
|
||||
"""
|
||||
Used for examining the distribution of values in a set. Produces scattering as in beeswarm or column scatter plots.
|
||||
Used for examining the distribution of values in an array.
|
||||
|
||||
Given a list of x-values, construct a set of y-values such that an x,y scatter-plot
|
||||
Given an array of x-values, construct an array of y-values such that an x,y scatter-plot
|
||||
will not have overlapping points (it will look similar to a histogram).
|
||||
"""
|
||||
if method == 'exact':
|
||||
return _pseudoScatterExact(data, spacing=spacing, shuffle=shuffle, bidir=bidir)
|
||||
elif method == 'histogram':
|
||||
return _pseudoScatterHistogram(data, spacing=spacing, shuffle=shuffle, bidir=bidir)
|
||||
|
||||
|
||||
def _pseudoScatterHistogram(data, spacing=None, shuffle=True, bidir=False):
|
||||
"""Works by binning points into a histogram and spreading them out to fill the bin.
|
||||
|
||||
Faster method, but can produce blocky results.
|
||||
"""
|
||||
inds = np.arange(len(data))
|
||||
if shuffle:
|
||||
np.random.shuffle(inds)
|
||||
|
||||
data = data[inds]
|
||||
|
||||
if spacing is None:
|
||||
spacing = 2.*np.std(data)/len(data)**0.5
|
||||
|
||||
yvals = np.empty(len(data))
|
||||
|
||||
dmin = data.min()
|
||||
dmax = data.max()
|
||||
nbins = int((dmax-dmin) / spacing) + 1
|
||||
bins = np.linspace(dmin, dmax, nbins)
|
||||
dx = bins[1] - bins[0]
|
||||
dbins = ((data - bins[0]) / dx).astype(int)
|
||||
binCounts = {}
|
||||
|
||||
for i,j in enumerate(dbins):
|
||||
c = binCounts.get(j, -1) + 1
|
||||
binCounts[j] = c
|
||||
yvals[i] = c
|
||||
|
||||
if bidir is True:
|
||||
for i in range(nbins):
|
||||
yvals[dbins==i] -= binCounts.get(i, 0) * 0.5
|
||||
|
||||
return yvals[np.argsort(inds)] ## un-shuffle values before returning
|
||||
|
||||
|
||||
def _pseudoScatterExact(data, spacing=None, shuffle=True, bidir=False):
|
||||
"""Works by stacking points up one at a time, searching for the lowest position available at each point.
|
||||
|
||||
This method produces nice, smooth results but can be prohibitively slow for large datasets.
|
||||
"""
|
||||
inds = np.arange(len(data))
|
||||
if shuffle:
|
||||
np.random.shuffle(inds)
|
||||
|
Loading…
x
Reference in New Issue
Block a user