Added cylinder geometry to opengl MeshData

This commit is contained in:
Luke Campagnola 2014-02-01 20:46:05 -05:00
parent c25eb76c2e
commit ff232f4e3a
2 changed files with 88 additions and 37 deletions

View File

@ -67,7 +67,7 @@ w.addItem(m2)
## Example 3: ## Example 3:
## icosahedron ## sphere
md = gl.MeshData.sphere(rows=10, cols=20) md = gl.MeshData.sphere(rows=10, cols=20)
#colors = np.random.random(size=(md.faceCount(), 4)) #colors = np.random.random(size=(md.faceCount(), 4))
@ -79,7 +79,7 @@ colors[:,1] = np.linspace(0, 1, colors.shape[0])
md.setFaceColors(colors) md.setFaceColors(colors)
m3 = gl.GLMeshItem(meshdata=md, smooth=False)#, shader='balloon') m3 = gl.GLMeshItem(meshdata=md, smooth=False)#, shader='balloon')
#m3.translate(-5, -5, 0) m3.translate(-5, -5, 0)
w.addItem(m3) w.addItem(m3)
@ -91,49 +91,68 @@ m4 = gl.GLMeshItem(meshdata=md, smooth=False, drawFaces=False, drawEdges=True, e
m4.translate(0,10,0) m4.translate(0,10,0)
w.addItem(m4) w.addItem(m4)
# Example 5:
# cylinder
md = gl.MeshData.cylinder(rows=10, cols=20, radius=[1., 2.0], length=5.)
md2 = gl.MeshData.cylinder(rows=10, cols=20, radius=[2., 0.5], length=10.)
colors = np.ones((md.faceCount(), 4), dtype=float)
colors[::2,0] = 0
colors[:,1] = np.linspace(0, 1, colors.shape[0])
md.setFaceColors(colors)
m5 = gl.GLMeshItem(meshdata=md, smooth=True, drawEdges=True, edgeColor=(1,0,0,1), shader='balloon')
colors = np.ones((md.faceCount(), 4), dtype=float)
colors[::2,0] = 0
colors[:,1] = np.linspace(0, 1, colors.shape[0])
md2.setFaceColors(colors)
m6 = gl.GLMeshItem(meshdata=md2, smooth=True, drawEdges=False, shader='balloon')
m6.translate(0,0,7.5)
m6.rotate(0., 0, 1, 1)
#m5.translate(-3,3,0)
w.addItem(m5)
w.addItem(m6)
def psi(i, j, k, offset=(25, 25, 50)):
x = i-offset[0]
y = j-offset[1]
z = k-offset[2]
th = np.arctan2(z, (x**2+y**2)**0.5)
phi = np.arctan2(y, x)
r = (x**2 + y**2 + z **2)**0.5
a0 = 1
#ps = (1./81.) * (2./np.pi)**0.5 * (1./a0)**(3/2) * (6 - r/a0) * (r/a0) * np.exp(-r/(3*a0)) * np.cos(th)
ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1)
#def psi(i, j, k, offset=(25, 25, 50)): return ps
#x = i-offset[0]
#y = j-offset[1]
#z = k-offset[2]
#th = np.arctan2(z, (x**2+y**2)**0.5)
#phi = np.arctan2(y, x)
#r = (x**2 + y**2 + z **2)**0.5
#a0 = 1
##ps = (1./81.) * (2./np.pi)**0.5 * (1./a0)**(3/2) * (6 - r/a0) * (r/a0) * np.exp(-r/(3*a0)) * np.cos(th)
#ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1)
#return ps #return ((1./81.) * (1./np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * (r/a0) * np.exp(-r/(3*a0)) * np.sin(th) * np.cos(th) * np.exp(2 * 1j * phi))**2
##return ((1./81.) * (1./np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * (r/a0) * np.exp(-r/(3*a0)) * np.sin(th) * np.cos(th) * np.exp(2 * 1j * phi))**2
#print("Generating scalar field..") print("Generating scalar field..")
#data = np.abs(np.fromfunction(psi, (50,50,100))) data = np.abs(np.fromfunction(psi, (50,50,100)))
##data = np.fromfunction(lambda i,j,k: np.sin(0.2*((i-25)**2+(j-15)**2+k**2)**0.5), (50,50,50)); #data = np.fromfunction(lambda i,j,k: np.sin(0.2*((i-25)**2+(j-15)**2+k**2)**0.5), (50,50,50));
#print("Generating isosurface..") # print("Generating isosurface..")
#verts = pg.isosurface(data, data.max()/4.) # verts = pg.isosurface(data, data.max()/4.)
# print dir(gl.MeshData)
#md = gl.MeshData.MeshData(vertexes=verts) # md = gl.GLMeshItem(vertexes=verts)
#
#colors = np.ones((md.vertexes(indexed='faces').shape[0], 4), dtype=float) # colors = np.ones((md.vertexes(indexed='faces').shape[0], 4), dtype=float)
#colors[:,3] = 0.3 # colors[:,3] = 0.3
#colors[:,2] = np.linspace(0, 1, colors.shape[0]) # colors[:,2] = np.linspace(0, 1, colors.shape[0])
#m1 = gl.GLMeshItem(meshdata=md, color=colors, smooth=False) # m1 = gl.GLMeshItem(meshdata=md, color=colors, smooth=False)
#
#w.addItem(m1) # w.addItem(m1)
#m1.translate(-25, -25, -20) # m1.translate(-25, -25, -20)
#
#m2 = gl.GLMeshItem(vertexes=verts, color=colors, smooth=True) # m2 = gl.GLMeshItem(vertexes=verts, color=colors, smooth=True)
#
#w.addItem(m2) # w.addItem(m2)
#m2.translate(-25, -25, -50) # m2.translate(-25, -25, -50)

View File

@ -1,5 +1,5 @@
from ..Qt import QtGui from pyqtgraph.Qt import QtGui
from .. import functions as fn import pyqtgraph.functions as fn
import numpy as np import numpy as np
class MeshData(object): class MeshData(object):
@ -516,4 +516,36 @@ class MeshData(object):
return MeshData(vertexes=verts, faces=faces) return MeshData(vertexes=verts, faces=faces)
@staticmethod
def cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False, ends=False):
"""
Return a MeshData instance with vertexes and faces computed
for a cylindrical surface.
The cylinder may be tapered with different radii at each end (truncated cone)
ends are open if ends = False
No closed ends implemented yet...
The easiest way may be to add a vertex at the top and bottom in the center of the face?
"""
verts = np.empty((rows+1, cols, 3), dtype=float)
if isinstance(radius, int):
radius = [radius, radius] # convert to list
## compute vertexes
th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols)) # angle around
r = (np.linspace(radius[0],radius[1],num=rows+1, endpoint=True)).reshape(rows+1, 1) # radius as a function of z
verts[...,2] = np.linspace(-length/2.0, length/2.0, num=rows+1, endpoint=True).reshape(rows+1, 1) # z
if offset:
th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column
verts[...,0] = r * np.cos(th) # x = r cos(th)
verts[...,1] = r * np.sin(th) # y = r sin(th)
verts = verts.reshape((rows+1)*cols, 3) # just reshape: no redundant vertices...
## compute faces
faces = np.empty((rows*cols*2, 3), dtype=np.uint)
rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
for row in range(rows):
start = row * cols * 2
faces[start:start+cols] = rowtemplate1 + row * cols
faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
return MeshData(vertexes=verts, faces=faces)