pyqtgraph/pyqtgraph/colormap.py

845 lines
33 KiB
Python

# -*- coding: utf-8 -*-
import numpy as np
from .Qt import QtGui, QtCore
from .functions import mkColor, eq, colorDistance, clip_scalar, clip_array
from os import path, listdir
from collections.abc import Callable, Sequence
import warnings
__all__ = ['ColorMap']
_mapCache = {}
def listMaps(source=None):
"""
.. warning:: Experimental, subject to change.
List available color maps.
Parameters
----------
source: str, optional
Color map source. If omitted, locally stored maps are listed. Otherwise:
- 'matplotlib' lists maps that can be imported from Matplotlib
- 'colorcet' lists maps that can be imported from ColorCET
Returns
-------
list of str
Known color map names.
"""
if source is None:
pathname = path.join(path.dirname(__file__), 'colors','maps')
files = listdir( pathname )
list_of_maps = []
for filename in files:
if filename[-4:] == '.csv' or filename[-4:] == '.hex':
list_of_maps.append(filename[:-4])
return list_of_maps
elif source.lower() == 'matplotlib':
try:
import matplotlib.pyplot as mpl_plt
list_of_maps = mpl_plt.colormaps()
return list_of_maps
except ModuleNotFoundError:
return []
elif source.lower() == 'colorcet':
try:
import colorcet
list_of_maps = list( colorcet.palette.keys() )
list_of_maps.sort()
return list_of_maps
except ModuleNotFoundError:
return []
return []
def get(name, source=None, skipCache=False):
"""
.. warning:: Experimental, subject to change.
Returns a ColorMap object from a local definition or imported from another library.
The generated ColorMap objects are cached for fast repeated access.
Parameters
----------
name: str
Name of color map. In addition to the included maps, this can also
be a path to a file in the local folder. See the files in the
``pyqtgraph/colors/maps/`` folder for examples of the format.
source: str, optional
If omitted, a locally stored map is returned. Otherwise:
- 'matplotlib' imports a map defined by Matplotlib.
- 'colorcet' imports a map defined by ColorCET.
skipCache: bool, optional
If `skipCache=True`, the internal cache is skipped and a new
ColorMap object is generated. This can load an unaltered copy
when the previous ColorMap object has been modified.
"""
if not skipCache and name in _mapCache:
return _mapCache[name]
if source is None:
return _getFromFile(name)
elif source == 'matplotlib':
return getFromMatplotlib(name)
elif source == 'colorcet':
return getFromColorcet(name)
return None
def _getFromFile(name):
filename = name
if filename[0] !='.': # load from built-in directory
dirname = path.dirname(__file__)
filename = path.join(dirname, 'colors/maps/'+filename)
if not path.isfile( filename ): # try suffixes if file is not found:
if path.isfile( filename+'.csv' ): filename += '.csv'
elif path.isfile( filename+'.hex' ): filename += '.hex'
with open(filename,'r') as fh:
idx = 0
color_list = []
if filename[-4:].lower() != '.hex':
csv_mode = True
else:
csv_mode = False
for line in fh:
line = line.strip()
if len(line) == 0: continue # empty line
if line[0] == ';': continue # comment
parts = line.split(sep=';', maxsplit=1) # split into color and names/comments
if csv_mode:
comp = parts[0].split(',')
if len( comp ) < 3: continue # not enough components given
color_tuple = tuple( [ int(255*float(c)+0.5) for c in comp ] )
else:
hex_str = parts[0]
if hex_str[0] == '#':
hex_str = hex_str[1:] # strip leading #
if len(hex_str) < 3: continue # not enough information
if len(hex_str) == 3: # parse as abbreviated RGB
hex_str = 2*hex_str[0] + 2*hex_str[1] + 2*hex_str[2]
elif len(hex_str) == 4: # parse as abbreviated RGBA
hex_str = 2*hex_str[0] + 2*hex_str[1] + 2*hex_str[2] + 2*hex_str[3]
if len(hex_str) < 6: continue # not enough information
try:
color_tuple = tuple( bytes.fromhex( hex_str ) )
except ValueError as e:
raise ValueError(f"failed to convert hexadecimal value '{hex_str}'.") from e
color_list.append( color_tuple )
idx += 1
# end of line reading loop
# end of open
cmap = ColorMap( name=name,
pos=np.linspace(0.0, 1.0, len(color_list)),
color=color_list) #, names=color_names)
if cmap is not None:
cmap.name = name
_mapCache[name] = cmap
return cmap
def getFromMatplotlib(name):
"""
Generates a ColorMap object from a Matplotlib definition.
Same as ``colormap.get(name, source='matplotlib')``.
"""
# inspired and informed by "mpl_cmaps_in_ImageItem.py", published by Sebastian Hoefer at
# https://github.com/honkomonk/pyqtgraph_sandbox/blob/master/mpl_cmaps_in_ImageItem.py
try:
import matplotlib.pyplot as mpl_plt
except ModuleNotFoundError:
return None
cmap = None
col_map = mpl_plt.get_cmap(name)
if hasattr(col_map, '_segmentdata'): # handle LinearSegmentedColormap
data = col_map._segmentdata
if ('red' in data) and isinstance(data['red'], (Sequence, np.ndarray)):
positions = set() # super-set of handle positions in individual channels
for key in ['red','green','blue']:
for tup in data[key]:
positions.add(tup[0])
col_data = np.zeros((len(positions),4 ))
col_data[:,-1] = sorted(positions)
for idx, key in enumerate(['red','green','blue']):
positions = np.zeros( len(data[key] ) )
comp_vals = np.zeros( len(data[key] ) )
for idx2, tup in enumerate( data[key] ):
positions[idx2] = tup[0]
comp_vals[idx2] = tup[1] # these are sorted in the raw data
col_data[:,idx] = np.interp(col_data[:,3], positions, comp_vals)
cmap = ColorMap(pos=col_data[:,-1], color=255*col_data[:,:3]+0.5)
# some color maps (gnuplot in particular) are defined by RGB component functions:
elif ('red' in data) and isinstance(data['red'], Callable):
col_data = np.zeros((64, 4))
col_data[:,-1] = np.linspace(0., 1., 64)
for idx, key in enumerate(['red','green','blue']):
col_data[:,idx] = np.clip( data[key](col_data[:,-1]), 0, 1)
cmap = ColorMap(pos=col_data[:,-1], color=255*col_data[:,:3]+0.5)
elif hasattr(col_map, 'colors'): # handle ListedColormap
col_data = np.array(col_map.colors)
cmap = ColorMap( name=name,
pos = np.linspace(0.0, 1.0, col_data.shape[0]), color=255*col_data[:,:3]+0.5 )
if cmap is not None:
cmap.name = name
_mapCache[name] = cmap
return cmap
def getFromColorcet(name):
""" Generates a ColorMap object from a colorcet definition. Same as ``colormap.get(name, source='colorcet')``. """
try:
import colorcet
except ModuleNotFoundError:
return None
color_strings = colorcet.palette[name]
color_list = []
for hex_str in color_strings:
if hex_str[0] != '#': continue
if len(hex_str) != 7:
raise ValueError(f"Invalid color string '{hex_str}' in colorcet import.")
color_tuple = tuple( bytes.fromhex( hex_str[1:] ) )
color_list.append( color_tuple )
if len(color_list) == 0:
return None
cmap = ColorMap( name=name,
pos=np.linspace(0.0, 1.0, len(color_list)),
color=color_list) #, names=color_names)
if cmap is not None:
cmap.name = name
_mapCache[name] = cmap
return cmap
def makeHslCycle( hue=0.0, saturation=1.0, lightness=0.5, steps=36 ):
"""
Returns a ColorMap object that traces a circular or spiraling path around the HSL color space.
Parameters
----------
hue : float or tuple of floats
Starting point or (start, end) for hue. Values can lie outside the [0 to 1] range
to realize multiple cycles. For a single value, one full hue cycle is generated.
The default starting hue is 0.0 (red).
saturation : float or tuple of floats, optional
Saturation value for the colors in the cycle, in the range of [0 to 1].
If a (start, end) tuple is given, saturation gradually changes between these values.
The default saturation is 1.0.
lightness : float or tuple of floats, optional
Lightness value for the colors in the cycle, in the range of [0 to 1].
If a (start, end) tuple is given, lightness gradually changes between these values.
The default lightness is 1.0.
steps: int, optional
Number of steps in the cycle. Between these steps, the color map will interpolate in RGB space.
The default number of steps is 36, generating a color map with 37 stops.
"""
if isinstance( hue, (tuple, list) ):
hueA, hueB = hue
else:
hueA = hue
hueB = hueA + 1.0
if isinstance( saturation, (tuple, list) ):
satA, satB = saturation
else:
satA = satB = saturation
if isinstance( lightness, (tuple, list) ):
lgtA, lgtB = lightness
else:
lgtA = lgtB = lightness
hue_vals = np.linspace(hueA, hueB, num=steps+1)
sat_vals = np.linspace(satA, satB, num=steps+1)
lgt_vals = np.linspace(lgtA, lgtB, num=steps+1)
color_list = []
for hue, sat, lgt in zip( hue_vals, sat_vals, lgt_vals):
qcol = QtGui.QColor.fromHslF( hue%1.0, sat, lgt )
color_list.append( qcol )
name = f'Hue {hueA:0.2f}-{hueB:0.2f}'
return ColorMap( None, color_list, name=name )
def makeMonochrome(color='neutral'):
"""
Returns a ColorMap object with a dark to bright ramp and adjustable tint.
In addition to neutral, warm or cold grays, imitations of monochrome computer monitors are also
available. The following predefined color ramps are available:
`neutral`, `warm`, `cool`, `green`, `amber`, `blue`, `red`, `pink`, `lavender`.
The ramp can also be specified by a tuple of float values in the range of 0 to 1.
In this case `(h, s, l0, l1)` describe hue, saturation, minimum lightness and maximum lightness
within the HSL color space. The values `l0` and `l1` can be omitted. They default to
`l0=0.0` and `l1=1.0` in this case.
Parameters
----------
color: str or tuple of floats
Color description. Can be one of the predefined identifiers, or a tuple
`(h, s, l0, l1)`, `(h, s)` or (`h`).
'green', 'amber', 'blue', 'red', 'lavender', 'pink'
or a tuple of relative ``(R,G,B)`` contributions in range 0.0 to 1.0
"""
name=f'Monochrome {color}'
defaults = {
'neutral': (0.00, 0.00, 0.00, 1.00),
'warm' : (0.10, 0.08, 0.00, 0.95),
'cool' : (0.60, 0.08, 0.00, 0.95),
'green' : (0.35, 0.55, 0.02, 0.90),
'amber' : (0.09, 0.80, 0.02, 0.80),
'blue' : (0.58, 0.85, 0.02, 0.95),
'red' : (0.01, 0.60, 0.02, 0.90),
'pink' : (0.93, 0.65, 0.02, 0.95),
'lavender': (0.75, 0.50, 0.02, 0.90)
}
if isinstance(color, str):
if color in defaults:
h_val, s_val, l_min, l_max = defaults[color]
else:
valid = ','.join(defaults.keys())
raise ValueError(f"Undefined color descriptor '{color}', known values are:\n{valid}")
else:
s_val = 0.70 # set up default values
l_min = 0.00
l_max = 1.00
if not hasattr(color,'__len__'):
h_val = float(color)
elif len(color) == 1:
h_val = color[0]
elif len(color) == 2:
h_val, s_val = color
elif len(color) == 4:
h_val, s_val, l_min, l_max = color
else:
raise ValueError(f"Invalid color descriptor '{color}'")
l_vals = np.linspace(l_min, l_max, num=16)
color_list = []
for l_val in l_vals:
qcol = QtGui.QColor.fromHslF( h_val, s_val, l_val )
color_list.append( qcol )
return ColorMap( None, color_list, name=name, linearize=True )
def modulatedBarData(length=768, width=32):
"""
Returns an NumPy array that represents a modulated color bar ranging from 0 to 1.
This is used to judge the perceived variation of the color gradient.
Parameters
----------
length: int
Length of the data set. Values will vary from 0 to 1 over this axis.
width: int
Width of the data set. The modulation will vary from 0% to 4% over this axis.
"""
gradient = np.linspace(0.00, 1.00, length)
modulation = -0.04 * np.sin( (np.pi/4) * np.arange(length) )
data = np.zeros( (length, width) )
for idx in range(width):
data[:,idx] = gradient + (idx/(width-1)) * modulation
clip_array(data, 0.0, 1.0, out=data)
return data
class ColorMap(object):
"""
ColorMap(pos, color, mapping=ColorMap.CLIP)
ColorMap stores a mapping of specific data values to colors, for example:
| 0.0 → black
| 0.2 → red
| 0.6 → yellow
| 1.0 → white
The colors for intermediate values are determined by interpolating between
the two nearest colors in RGB color space.
A ColorMap object provides access to the interpolated colors by indexing with a float value:
``cm[0.5]`` returns a QColor corresponding to the center of ColorMap `cm`.
"""
## mapping modes
CLIP = 1
REPEAT = 2
MIRROR = 3
DIVERGING = 4
## return types
BYTE = 1
FLOAT = 2
QCOLOR = 3
enumMap = {
'clip': CLIP,
'repeat': REPEAT,
'mirror': MIRROR,
'diverging': DIVERGING,
'byte': BYTE,
'float': FLOAT,
'qcolor': QCOLOR,
}
def __init__(self, pos, color, mapping=CLIP, mode=None, linearize=False, name=''):
"""
__init__(pos, color, mapping=ColorMap.CLIP)
Parameters
----------
pos: array_like of float in range 0 to 1, or None
Assigned positions of specified colors. `None` sets equal spacing.
color: array_like of colors
List of colors, interpreted via :func:`mkColor() <pyqtgraph.mkColor>`.
mapping: str or int, optional
Controls how values outside the 0 to 1 range are mapped to colors.
See :func:`setMappingMode() <ColorMap.setMappingMode>` for details.
The default of `ColorMap.CLIP` continues to show
the colors assigned to 0 and 1 for all values below or above this range, respectively.
"""
self.name = name # storing a name helps identify ColorMaps sampled by Palette
if mode is not None:
warnings.warn(
"'mode' argument is deprecated and does nothing.",
DeprecationWarning, stacklevel=2
)
if pos is None:
order = range(len(color))
self.pos = np.linspace(0.0, 1.0, num=len(color))
else:
self.pos = np.array(pos)
order = np.argsort(self.pos)
self.pos = self.pos[order]
self.color = np.zeros( (len(color), 4) ) # stores float rgba values
for cnt, idx in enumerate(order):
self.color[cnt] = mkColor(color[idx]).getRgbF()
# alternative code may be more efficient, but fails to handle lists of QColor.
# self.color = np.apply_along_axis(
# func1d = lambda x: np.uint8( mkColor(x).getRgb() ), # cast RGB integer values to uint8
# axis = -1,
# arr = color,
# )[order]
self.mapping_mode = self.CLIP # default to CLIP mode
if mapping is not None:
self.setMappingMode( mapping )
self.stopsCache = {}
if linearize: self.linearize()
def setMappingMode(self, mapping):
"""
Sets the way that values outside of the range 0 to 1 are mapped to colors.
Parameters
----------
mapping: int or str
Sets mapping mode to
- `ColorMap.CLIP` or 'clip': Values are clipped to the range 0 to 1. ColorMap defaults to this.
- `ColorMap.REPEAT` or 'repeat': Colors repeat cyclically, i.e. range 1 to 2 repeats the colors for 0 to 1.
- `ColorMap.MIRROR` or 'mirror': The range 0 to -1 uses same colors (in reverse order) as 0 to 1.
- `ColorMap.DIVERGING` or 'diverging': Colors are mapped to -1 to 1 such that the central value appears at 0.
"""
if isinstance(mapping, str):
mapping = self.enumMap[mapping.lower()]
if mapping in [self.CLIP, self.REPEAT, self.DIVERGING, self.MIRROR]:
self.mapping_mode = mapping # only allow defined values
else:
raise ValueError(f"Undefined mapping type '{mapping}'")
self.stopsCache = {}
def __str__(self):
""" provide human-readable identifier """
if self.name is None:
return 'unnamed ColorMap({:d})'.format(len(self.pos))
return "ColorMap({:d}):'{:s}'".format(len(self.pos),self.name)
def __getitem__(self, key):
""" Convenient shorthand access to palette colors """
if isinstance(key, int): # access by color index
return self.getByIndex(key)
# otherwise access by map
try: # accept any numerical format that converts to float
float_idx = float(key)
return self.mapToQColor(float_idx)
except ValueError: pass
return None
def linearize(self):
"""
Adjusts the positions assigned to color stops to approximately equalize the perceived color difference
for a fixed step.
"""
colors = self.getColors(mode=self.QCOLOR)
distances = colorDistance(colors)
positions = np.insert( np.cumsum(distances), 0, 0.0 )
self.pos = positions / positions[-1] # normalize last value to 1.0
self.stopsCache = {}
def reverse(self):
"""
Reverses the color map, so that the color assigned to a value of 1 now appears at 0 and vice versa.
This is convenient to adjust imported color maps.
"""
self.pos = 1.0 - np.flip( self.pos )
self.color = np.flip( self.color, axis=0 )
self.stopsCache = {}
def getSubset(self, start, span):
"""
Returns a new ColorMap object that extracts the subset specified by 'start' and 'length'
to the full 0.0 to 1.0 range. A negative length results in a color map that is reversed
relative to the original.
Parameters
----------
start : float (0.0 to 1.0)
Starting value that defines the 0.0 value of the new color map.
span : float (-1.0 to 1.0)
span of the extracted region. The orignal color map will be trated as cyclical
if the extracted interval exceeds the 0.0 to 1.0 range.
"""
pos, col = self.getStops( mode=ColorMap.FLOAT )
start = clip_scalar(start, 0.0, 1.0)
span = clip_scalar(span, -1.0, 1.0)
if span == 0.0:
raise ValueError("'length' needs to be non-zero")
stop = (start + span)
if stop > 1.0 or stop < 0.0: stop = stop % 1.0
# find indices *inside* range, start and end will be added by sampling later
if span > 0:
ref_pos = start # lowest position value at start
idxA = np.searchsorted( pos, start, side='right' )
idxB = np.searchsorted( pos, stop , side='left' ) # + 1 # right-side element of interval
wraps = bool( stop < start ) # wraps around?
else:
ref_pos = stop # lowest position value at stop
idxA = np.searchsorted( pos, stop , side='right')
idxB = np.searchsorted( pos, start, side='left' ) # + 1 # right-side element of interval
wraps = bool( stop > start ) # wraps around?
if wraps: # wraps around:
length1 = (len(pos)-idxA) # before wrap
length2 = idxB # after wrap
new_length = length1 + length2 + 2 # combined; plus edge elements
new_pos = np.zeros( new_length )
new_col = np.zeros( (new_length, 4) )
new_pos[ 1:length1+1] = (0 + pos[idxA:] - ref_pos) / span # starting point lie in 0 to 1 range
new_pos[length1+1:-1] = (1 + pos[:idxB] - ref_pos) / span # end point wrapped to -1 to 0 range
new_pos[length1] -= np.copysign(1e-6, span) # breaks degeneracy of shifted 0.0 and 1.0 values
new_col[ 1:length1+1] = col[idxA:]
new_col[length1+1:-1] = col[:idxB]
else: # does not wrap around:
new_length = (idxB - idxA) + 2 # two additional edge values will be added
new_pos = np.zeros( new_length )
new_col = np.zeros( (new_length, 4) )
new_pos[1:-1] = (pos[idxA:idxB] - ref_pos) / span
new_col[1:-1] = col[idxA:idxB]
if span < 0: # for reversed subsets, positions now progress 0 to -1 and need to be flipped
new_pos += 1.0
new_pos = np.flip( new_pos)
new_col = np.flip( new_col, axis=0 )
new_pos[ 0] = 0.0
new_col[ 0] = self.mapToFloat(start)
new_pos[-1] = 1.0
new_col[-1] = self.mapToFloat(stop)
cmap = ColorMap( pos=new_pos, color=255.*new_col )
cmap.name = f"{self.name}[{start:.2f}({span:+.2f})]"
return cmap
def map(self, data, mode=BYTE):
"""
map(data, mode=ColorMap.BYTE)
Returns an array of colors corresponding to a single value or an array of values.
Data must be either a scalar position or an array (any shape) of positions.
Parameters
----------
data: float or array_like of float
Scalar value(s) to be mapped to colors
mode: str or int, optional
Determines return format:
- `ColorMap.BYTE` or 'byte': Colors are returned as 0-255 unsigned bytes. (default)
- `ColorMap.FLOAT` or 'float': Colors are returned as 0.0-1.0 floats.
- `ColorMap.QCOLOR` or 'qcolor': Colors are returned as QColor objects.
Returns
-------
array of color.dtype
for `ColorMap.BYTE` or `ColorMap.FLOAT`:
RGB values for each `data` value, arranged in the same shape as `data`.
list of QColor objects
for `ColorMap.QCOLOR`:
Colors for each `data` value as Qcolor objects.
"""
if isinstance(mode, str):
mode = self.enumMap[mode.lower()]
if mode == self.QCOLOR:
pos, color = self.getStops(self.FLOAT)
else:
pos, color = self.getStops(mode)
if np.isscalar(data):
interp = np.empty((color.shape[1],), dtype=color.dtype)
else:
if not isinstance(data, np.ndarray):
data = np.array(data)
interp = np.empty(data.shape + (color.shape[1],), dtype=color.dtype)
if self.mapping_mode != self.CLIP:
if self.mapping_mode == self.REPEAT:
data = data % 1.0
elif self.mapping_mode == self.DIVERGING:
data = (data/2)+0.5
elif self.mapping_mode == self.MIRROR:
data = abs(data)
for i in range(color.shape[1]):
interp[...,i] = np.interp(data, pos, color[:,i])
# Convert to QColor if requested
if mode == self.QCOLOR:
if np.isscalar(data):
return QtGui.QColor.fromRgbF(*interp)
else:
return [QtGui.QColor.fromRgbF(*x.tolist()) for x in interp]
else:
return interp
def mapToQColor(self, data):
"""Convenience function; see :func:`map() <pyqtgraph.ColorMap.map>`."""
return self.map(data, mode=self.QCOLOR)
def mapToByte(self, data):
"""Convenience function; see :func:`map() <pyqtgraph.ColorMap.map>`."""
return self.map(data, mode=self.BYTE)
def mapToFloat(self, data):
"""Convenience function; see :func:`map() <pyqtgraph.ColorMap.map>`."""
return self.map(data, mode=self.FLOAT)
def getByIndex(self, idx):
"""Retrieve a QColor by the index of the stop it is assigned to."""
return QtGui.QColor( *self.color[idx] )
def getGradient(self, p1=None, p2=None):
"""
Returns a QtGui.QLinearGradient corresponding to this ColorMap.
The span and orientiation is given by two points in plot coordinates.
When no parameters are given for `p1` and `p2`, the gradient is mapped to the
`y` coordinates 0 to 1, unless the color map is defined for a more limited range.
This is a somewhat expensive operation, and it is recommended to store and reuse the returned
gradient instead of repeatedly regenerating it.
Parameters
----------
p1: QtCore.QPointF, default (0,0)
Starting point (value 0) of the gradient.
p2: QtCore.QPointF, default (dy,0)
End point (value 1) of the gradient. Default parameter `dy` is the span of ``max(pos) - min(pos)``
over which the color map is defined, typically `dy=1`.
"""
if p1 is None:
p1 = QtCore.QPointF(0,0)
if p2 is None:
p2 = QtCore.QPointF(self.pos.max()-self.pos.min(),0)
grad = QtGui.QLinearGradient(p1, p2)
pos, color = self.getStops(mode=self.QCOLOR)
if self.mapping_mode == self.MIRROR:
pos_n = (1. - np.flip(pos)) / 2
col_n = np.flip( color, axis=0 )
pos_p = (1. + pos) / 2
col_p = color
pos = np.concatenate( (pos_n, pos_p) )
color = np.concatenate( (col_n, col_p) )
grad.setStops(list(zip(pos, color)))
if self.mapping_mode == self.REPEAT:
grad.setSpread( QtGui.QGradient.Spread.RepeatSpread )
return grad
def getBrush(self, span=(0.,1.), orientation='vertical'):
"""
Returns a QBrush painting with the color map applied over the selected span of plot values.
When the mapping mode is set to `ColorMap.MIRROR`, the selected span includes the color map twice,
first in reversed order and then normal.
It is recommended to store and reuse this gradient brush instead of regenerating it repeatedly.
Parameters
----------
span : tuple (min, max), default (0.0, 1.0)
Span of data values covered by the gradient:
- Color map value 0.0 will appear at `min`,
- Color map value 1.0 will appear at `max`.
orientation : str, default 'vertical'
Orientiation of the gradient:
- 'vertical': `span` corresponds to the `y` coordinate.
- 'horizontal': `span` corresponds to the `x` coordinate.
"""
if orientation == 'vertical':
grad = self.getGradient( p1=QtCore.QPointF(0.,span[0]), p2=QtCore.QPointF(0.,span[1]) )
elif orientation == 'horizontal':
grad = self.getGradient( p1=QtCore.QPointF(span[0],0.), p2=QtCore.QPointF(span[1],0.) )
else:
raise ValueError("Orientation must be 'vertical' or 'horizontal'")
return QtGui.QBrush(grad)
def getPen(self, span=(0.,1.), orientation='vertical', width=1.0):
"""
Returns a QPen that draws according to the color map based on vertical or horizontal position.
It is recommended to store and reuse this gradient pen instead of regenerating it repeatedly.
Parameters
----------
span : tuple (min, max), default (0.0, 1.0)
Span of the data values covered by the gradient:
- Color map value 0.0 will appear at `min`.
- Color map value 1.0 will appear at `max`.
orientation : str, default 'vertical'
Orientiation of the gradient:
- 'vertical' creates a vertical gradient, where `span` corresponds to the `y` coordinate.
- 'horizontal' creates a horizontal gradient, where `span` correspnds to the `x` coordinate.
width : int or float
Width of the pen in pixels on screen.
"""
brush = self.getBrush( span=span, orientation=orientation )
pen = QtGui.QPen(brush, width)
pen.setCosmetic(True)
return pen
def getColors(self, mode=BYTE):
"""
Returns a list of the colors associated with the stops of the color map.
The parameter `mode` can be one of
- `ColorMap.BYTE` or 'byte' to return colors as RGBA tuples in byte format (0 to 255)
- `ColorMap.FLOAT` or 'float' to return colors as RGBA tuples in float format (0.0 to 1.0)
- `ColorMap.QCOLOR` or 'qcolor' to return a list of QColors
The default is byte format.
"""
stops, color = self.getStops(mode=mode)
return color
def getStops(self, mode=BYTE):
"""
Returns a tuple (stops, colors) containing a list of all stops (ranging 0.0 to 1.0)
and a list of the associated colors.
The parameter `mode` can be one of
- `ColorMap.BYTE` or 'byte' to return colors as RGBA tuples in byte format (0 to 255)
- `ColorMap.FLOAT` or 'float' to return colors as RGBA tuples in float format (0.0 to 1.0)
- `ColorMap.QCOLOR` or 'qcolor' to return a list of QColors
The default is byte format.
"""
if isinstance(mode, str):
mode = self.enumMap[mode.lower()]
if mode not in self.stopsCache:
color = self.color
if mode == self.BYTE and color.dtype.kind == 'f':
color = (color*255).astype(np.ubyte)
elif mode == self.FLOAT and color.dtype.kind != 'f':
color = color.astype(float) / 255.
elif mode == self.QCOLOR:
if color.dtype.kind == 'f':
factory = QtGui.QColor.fromRgbF
else:
factory = QtGui.QColor.fromRgb
color = [factory(*x.tolist()) for x in color]
self.stopsCache[mode] = (self.pos, color)
return self.stopsCache[mode]
def getLookupTable(self, start=0.0, stop=1.0, nPts=512, alpha=None, mode=BYTE):
"""
getLookupTable(start=0.0, stop=1.0, nPts=512, alpha=None, mode=ColorMap.BYTE)
Returns an equally-spaced lookup table of RGB(A) values created
by interpolating the specified color stops.
Parameters
----------
start: float, default=0.0
The starting value in the lookup table
stop: float, default=1.0
The final value in the lookup table
nPts: int, default is 512
The number of points in the returned lookup table.
alpha: True, False, or None
Specifies whether or not alpha values are included in the table.
If alpha is None, it will be automatically determined.
mode: int or str, default is `ColorMap.BYTE`
Determines return type as described in :func:`map() <pyqtgraph.ColorMap.map>`, can be
either `ColorMap.BYTE` (0 to 255), `ColorMap.FLOAT` (0.0 to 1.0) or `ColorMap.QColor`.
Returns
-------
array of color.dtype
for `ColorMap.BYTE` or `ColorMap.FLOAT`:
RGB values for each `data` value, arranged in the same shape as `data`.
If alpha values are included the array has shape (`nPts`, 4), otherwise (`nPts`, 3).
list of QColor objects
for `ColorMap.QCOLOR`:
Colors for each `data` value as QColor objects.
"""
if isinstance(mode, str):
mode = self.enumMap[mode.lower()]
if alpha is None:
alpha = self.usesAlpha()
x = np.linspace(start, stop, nPts)
table = self.map(x, mode)
if not alpha and mode != self.QCOLOR:
return table[:,:3]
else:
return table
def usesAlpha(self):
"""Returns `True` if any stops have assigned colors with alpha < 255."""
max = 1.0 if self.color.dtype.kind == 'f' else 255
return np.any(self.color[:,3] != max)
def isMapTrivial(self):
"""
Returns `True` if the gradient has exactly two stops in it: Black at 0.0 and white at 1.0.
"""
if len(self.pos) != 2:
return False
if self.pos[0] != 0.0 or self.pos[1] != 1.0:
return False
if self.color.dtype.kind == 'f':
return np.all(self.color == np.array([[0.,0.,0.,1.], [1.,1.,1.,1.]]))
else:
return np.all(self.color == np.array([[0,0,0,255], [255,255,255,255]]))
def __repr__(self):
pos = repr(self.pos).replace('\n', '')
color = repr(self.color).replace('\n', '')
return "ColorMap(%s, %s)" % (pos, color)
def __eq__(self, other):
if other is None:
return False
return eq(self.pos, other.pos) and eq(self.color, other.color)