pyqtgraph/flowchart/library/functions.py
Luke Campagnola 80148920c9 Bugfixes:
- Image exporter detects GraphicsView background color
- Corrected exporter filename handling for SVG export
- ViewBox no longer attempts to deregister itself while python is exiting
- Speedup for conversion using np.array(MetaArray_instance)
- GLGraphicsItem updates immediately when its GL options have changed
- Corrected some GL shader program bugs for nVidia drivers
- Fixed coordinate mapping bug in functions.transformCoordinates
- Fixed PySide import error
2012-12-04 21:02:05 -05:00

336 lines
11 KiB
Python

import scipy
import numpy as np
from pyqtgraph.metaarray import MetaArray
def downsample(data, n, axis=0, xvals='subsample'):
"""Downsample by averaging points together across axis.
If multiple axes are specified, runs once per axis.
If a metaArray is given, then the axis values can be either subsampled
or downsampled to match.
"""
ma = None
if (hasattr(data, 'implements') and data.implements('MetaArray')):
ma = data
data = data.view(np.ndarray)
if hasattr(axis, '__len__'):
if not hasattr(n, '__len__'):
n = [n]*len(axis)
for i in range(len(axis)):
data = downsample(data, n[i], axis[i])
return data
nPts = int(data.shape[axis] / n)
s = list(data.shape)
s[axis] = nPts
s.insert(axis+1, n)
sl = [slice(None)] * data.ndim
sl[axis] = slice(0, nPts*n)
d1 = data[tuple(sl)]
#print d1.shape, s
d1.shape = tuple(s)
d2 = d1.mean(axis+1)
if ma is None:
return d2
else:
info = ma.infoCopy()
if 'values' in info[axis]:
if xvals == 'subsample':
info[axis]['values'] = info[axis]['values'][::n][:nPts]
elif xvals == 'downsample':
info[axis]['values'] = downsample(info[axis]['values'], n)
return MetaArray(d2, info=info)
def applyFilter(data, b, a, padding=100, bidir=True):
"""Apply a linear filter with coefficients a, b. Optionally pad the data before filtering
and/or run the filter in both directions."""
d1 = data.view(np.ndarray)
if padding > 0:
d1 = np.hstack([d1[:padding], d1, d1[-padding:]])
if bidir:
d1 = scipy.signal.lfilter(b, a, scipy.signal.lfilter(b, a, d1)[::-1])[::-1]
else:
d1 = scipy.signal.lfilter(b, a, d1)
if padding > 0:
d1 = d1[padding:-padding]
if (hasattr(data, 'implements') and data.implements('MetaArray')):
return MetaArray(d1, info=data.infoCopy())
else:
return d1
def besselFilter(data, cutoff, order=1, dt=None, btype='low', bidir=True):
"""return data passed through bessel filter"""
if dt is None:
try:
tvals = data.xvals('Time')
dt = (tvals[-1]-tvals[0]) / (len(tvals)-1)
except:
dt = 1.0
b,a = scipy.signal.bessel(order, cutoff * dt, btype=btype)
return applyFilter(data, b, a, bidir=bidir)
#base = data.mean()
#d1 = scipy.signal.lfilter(b, a, data.view(ndarray)-base) + base
#if (hasattr(data, 'implements') and data.implements('MetaArray')):
#return MetaArray(d1, info=data.infoCopy())
#return d1
def butterworthFilter(data, wPass, wStop=None, gPass=2.0, gStop=20.0, order=1, dt=None, btype='low', bidir=True):
"""return data passed through bessel filter"""
if dt is None:
try:
tvals = data.xvals('Time')
dt = (tvals[-1]-tvals[0]) / (len(tvals)-1)
except:
dt = 1.0
if wStop is None:
wStop = wPass * 2.0
ord, Wn = scipy.signal.buttord(wPass*dt*2., wStop*dt*2., gPass, gStop)
#print "butterworth ord %f Wn %f c %f sc %f" % (ord, Wn, cutoff, stopCutoff)
b,a = scipy.signal.butter(ord, Wn, btype=btype)
return applyFilter(data, b, a, bidir=bidir)
def rollingSum(data, n):
d1 = data.copy()
d1[1:] += d1[:-1] # integrate
d2 = np.empty(len(d1) - n + 1, dtype=data.dtype)
d2[0] = d1[n-1] # copy first point
d2[1:] = d1[n:] - d1[:-n] # subtract
return d2
def mode(data, bins=None):
"""Returns location max value from histogram."""
if bins is None:
bins = int(len(data)/10.)
if bins < 2:
bins = 2
y, x = np.histogram(data, bins=bins)
ind = np.argmax(y)
mode = 0.5 * (x[ind] + x[ind+1])
return mode
def modeFilter(data, window=500, step=None, bins=None):
"""Filter based on histogram-based mode function"""
d1 = data.view(np.ndarray)
vals = []
l2 = int(window/2.)
if step is None:
step = l2
i = 0
while True:
if i > len(data)-step:
break
vals.append(mode(d1[i:i+window], bins))
i += step
chunks = [np.linspace(vals[0], vals[0], l2)]
for i in range(len(vals)-1):
chunks.append(np.linspace(vals[i], vals[i+1], step))
remain = len(data) - step*(len(vals)-1) - l2
chunks.append(np.linspace(vals[-1], vals[-1], remain))
d2 = np.hstack(chunks)
if (hasattr(data, 'implements') and data.implements('MetaArray')):
return MetaArray(d2, info=data.infoCopy())
return d2
def denoise(data, radius=2, threshold=4):
"""Very simple noise removal function. Compares a point to surrounding points,
replaces with nearby values if the difference is too large."""
r2 = radius * 2
d1 = data.view(np.ndarray)
d2 = d1[radius:] - d1[:-radius] #a derivative
#d3 = data[r2:] - data[:-r2]
#d4 = d2 - d3
stdev = d2.std()
#print "denoise: stdev of derivative:", stdev
mask1 = d2 > stdev*threshold #where derivative is large and positive
mask2 = d2 < -stdev*threshold #where derivative is large and negative
maskpos = mask1[:-radius] * mask2[radius:] #both need to be true
maskneg = mask1[radius:] * mask2[:-radius]
mask = maskpos + maskneg
d5 = np.where(mask, d1[:-r2], d1[radius:-radius]) #where both are true replace the value with the value from 2 points before
d6 = np.empty(d1.shape, dtype=d1.dtype) #add points back to the ends
d6[radius:-radius] = d5
d6[:radius] = d1[:radius]
d6[-radius:] = d1[-radius:]
if (hasattr(data, 'implements') and data.implements('MetaArray')):
return MetaArray(d6, info=data.infoCopy())
return d6
def adaptiveDetrend(data, x=None, threshold=3.0):
"""Return the signal with baseline removed. Discards outliers from baseline measurement."""
if x is None:
x = data.xvals(0)
d = data.view(np.ndarray)
d2 = scipy.signal.detrend(d)
stdev = d2.std()
mask = abs(d2) < stdev*threshold
#d3 = where(mask, 0, d2)
#d4 = d2 - lowPass(d3, cutoffs[1], dt=dt)
lr = stats.linregress(x[mask], d[mask])
base = lr[1] + lr[0]*x
d4 = d - base
if (hasattr(data, 'implements') and data.implements('MetaArray')):
return MetaArray(d4, info=data.infoCopy())
return d4
def histogramDetrend(data, window=500, bins=50, threshold=3.0, offsetOnly=False):
"""Linear detrend. Works by finding the most common value at the beginning and end of a trace, excluding outliers.
If offsetOnly is True, then only the offset from the beginning of the trace is subtracted.
"""
d1 = data.view(np.ndarray)
d2 = [d1[:window], d1[-window:]]
v = [0, 0]
for i in [0, 1]:
d3 = d2[i]
stdev = d3.std()
mask = abs(d3-np.median(d3)) < stdev*threshold
d4 = d3[mask]
y, x = np.histogram(d4, bins=bins)
ind = np.argmax(y)
v[i] = 0.5 * (x[ind] + x[ind+1])
if offsetOnly:
d3 = data.view(np.ndarray) - v[0]
else:
base = np.linspace(v[0], v[1], len(data))
d3 = data.view(np.ndarray) - base
if (hasattr(data, 'implements') and data.implements('MetaArray')):
return MetaArray(d3, info=data.infoCopy())
return d3
def concatenateColumns(data):
"""Returns a single record array with columns taken from the elements in data.
data should be a list of elements, which can be either record arrays or tuples (name, type, data)
"""
## first determine dtype
dtype = []
names = set()
maxLen = 0
for element in data:
if isinstance(element, np.ndarray):
## use existing columns
for i in range(len(element.dtype)):
name = element.dtype.names[i]
dtype.append((name, element.dtype[i]))
maxLen = max(maxLen, len(element))
else:
name, type, d = element
if type is None:
type = suggestDType(d)
dtype.append((name, type))
if isinstance(d, list) or isinstance(d, np.ndarray):
maxLen = max(maxLen, len(d))
if name in names:
raise Exception('Name "%s" repeated' % name)
names.add(name)
## create empty array
out = np.empty(maxLen, dtype)
## fill columns
for element in data:
if isinstance(element, np.ndarray):
for i in range(len(element.dtype)):
name = element.dtype.names[i]
try:
out[name] = element[name]
except:
print("Column:", name)
print("Input shape:", element.shape, element.dtype)
print("Output shape:", out.shape, out.dtype)
raise
else:
name, type, d = element
out[name] = d
return out
def suggestDType(x):
"""Return a suitable dtype for x"""
if isinstance(x, list) or isinstance(x, tuple):
if len(x) == 0:
raise Exception('can not determine dtype for empty list')
x = x[0]
if hasattr(x, 'dtype'):
return x.dtype
elif isinstance(x, float):
return float
elif isinstance(x, int):
return int
#elif isinstance(x, basestring): ## don't try to guess correct string length; use object instead.
#return '<U%d' % len(x)
else:
return object
def removePeriodic(data, f0=60.0, dt=None, harmonics=10, samples=4):
if (hasattr(data, 'implements') and data.implements('MetaArray')):
data1 = data.asarray()
if dt is None:
times = data.xvals('Time')
dt = times[1]-times[0]
else:
data1 = data
if dt is None:
raise Exception('Must specify dt for this data')
ft = np.fft.fft(data1)
## determine frequencies in fft data
df = 1.0 / (len(data1) * dt)
freqs = np.linspace(0.0, (len(ft)-1) * df, len(ft))
## flatten spikes at f0 and harmonics
for i in xrange(1, harmonics + 2):
f = f0 * i # target frequency
## determine index range to check for this frequency
ind1 = int(np.floor(f / df))
ind2 = int(np.ceil(f / df)) + (samples-1)
if ind1 > len(ft)/2.:
break
mag = (abs(ft[ind1-1]) + abs(ft[ind2+1])) * 0.5
for j in range(ind1, ind2+1):
phase = np.angle(ft[j]) ## Must preserve the phase of each point, otherwise any transients in the trace might lead to large artifacts.
re = mag * np.cos(phase)
im = mag * np.sin(phase)
ft[j] = re + im*1j
ft[len(ft)-j] = re - im*1j
data2 = np.fft.ifft(ft).real
if (hasattr(data, 'implements') and data.implements('MetaArray')):
return metaarray.MetaArray(data2, info=data.infoCopy())
else:
return data2