pyqtgraph/pyqtgraph/graphicsItems/ScatterPlotItem.py

1366 lines
50 KiB
Python

# -*- coding: utf-8 -*-
import warnings
from itertools import repeat, chain
try:
from itertools import imap
except ImportError:
imap = map
import itertools
import numpy as np
import weakref
from ..Qt import QtGui, QtCore, QT_LIB
from ..Point import Point
from .. import functions as fn
from .GraphicsItem import GraphicsItem
from .GraphicsObject import GraphicsObject
from .. import getConfigOption
from collections import OrderedDict
from .. import debug
from ..python2_3 import basestring
__all__ = ['ScatterPlotItem', 'SpotItem']
# When pxMode=True for ScatterPlotItem, QPainter.drawPixmap is used for drawing, which
# has multiple type signatures. One takes int coordinates of source and target
# rectangles, and another takes QRectF objects. The latter approach has the overhead of
# updating these objects, which can be almost as much as drawing.
# For PyQt5, drawPixmap is significantly faster with QRectF coordinates for some
# reason, offsetting this overhead. For PySide2 this is not the case, and the QRectF
# maintenance overhead is an unnecessary burden. If this performance issue is solved
# by PyQt5, the QRectF coordinate approach can be removed by simply deleting all of the
# "if _USE_QRECT" code blocks in ScatterPlotItem. Ideally, drawPixmap would accept the
# numpy arrays of coordinates directly, which would improve performance significantly,
# as the separate calls to this method are the current bottleneck.
# See: https://bugreports.qt.io/browse/PYSIDE-163
_USE_QRECT = QT_LIB not in ['PySide2', 'PySide6']
## Build all symbol paths
name_list = ['o', 's', 't', 't1', 't2', 't3', 'd', '+', 'x', 'p', 'h', 'star',
'arrow_up', 'arrow_right', 'arrow_down', 'arrow_left', 'crosshair']
Symbols = OrderedDict([(name, QtGui.QPainterPath()) for name in name_list])
Symbols['o'].addEllipse(QtCore.QRectF(-0.5, -0.5, 1, 1))
Symbols['s'].addRect(QtCore.QRectF(-0.5, -0.5, 1, 1))
def makeCrosshair(r=0.5, w=1, h=1):
path = QtGui.QPainterPath()
rect = QtCore.QRectF(-r, -r, r * 2, r * 2)
path.addEllipse(rect)
path.moveTo(-w, 0)
path.lineTo(w, 0)
path.moveTo(0, -h)
path.lineTo(0, h)
return path
Symbols['crosshair'] = makeCrosshair()
coords = {
't': [(-0.5, -0.5), (0, 0.5), (0.5, -0.5)],
't1': [(-0.5, 0.5), (0, -0.5), (0.5, 0.5)],
't2': [(-0.5, -0.5), (-0.5, 0.5), (0.5, 0)],
't3': [(0.5, 0.5), (0.5, -0.5), (-0.5, 0)],
'd': [(0., -0.5), (-0.4, 0.), (0, 0.5), (0.4, 0)],
'+': [
(-0.5, -0.1), (-0.5, 0.1), (-0.1, 0.1), (-0.1, 0.5),
(0.1, 0.5), (0.1, 0.1), (0.5, 0.1), (0.5, -0.1),
(0.1, -0.1), (0.1, -0.5), (-0.1, -0.5), (-0.1, -0.1)
],
'p': [(0, -0.5), (-0.4755, -0.1545), (-0.2939, 0.4045),
(0.2939, 0.4045), (0.4755, -0.1545)],
'h': [(0.433, 0.25), (0., 0.5), (-0.433, 0.25), (-0.433, -0.25),
(0, -0.5), (0.433, -0.25)],
'star': [(0, -0.5), (-0.1123, -0.1545), (-0.4755, -0.1545),
(-0.1816, 0.059), (-0.2939, 0.4045), (0, 0.1910),
(0.2939, 0.4045), (0.1816, 0.059), (0.4755, -0.1545),
(0.1123, -0.1545)],
'arrow_down': [
(-0.125, 0.125), (0, 0), (0.125, 0.125),
(0.05, 0.125), (0.05, 0.5), (-0.05, 0.5), (-0.05, 0.125)
]
}
for k, c in coords.items():
Symbols[k].moveTo(*c[0])
for x,y in c[1:]:
Symbols[k].lineTo(x, y)
Symbols[k].closeSubpath()
tr = QtGui.QTransform()
tr.rotate(45)
Symbols['x'] = tr.map(Symbols['+'])
tr.rotate(45)
Symbols['arrow_right'] = tr.map(Symbols['arrow_down'])
Symbols['arrow_up'] = tr.map(Symbols['arrow_right'])
Symbols['arrow_left'] = tr.map(Symbols['arrow_up'])
_DEFAULT_STYLE = {'symbol': None, 'size': -1, 'pen': None, 'brush': None, 'visible': True}
def drawSymbol(painter, symbol, size, pen, brush):
if symbol is None:
return
painter.scale(size, size)
painter.setPen(pen)
painter.setBrush(brush)
if isinstance(symbol, basestring):
symbol = Symbols[symbol]
if np.isscalar(symbol):
symbol = list(Symbols.values())[symbol % len(Symbols)]
painter.drawPath(symbol)
def renderSymbol(symbol, size, pen, brush, device=None):
"""
Render a symbol specification to QImage.
Symbol may be either a QPainterPath or one of the keys in the Symbols dict.
If *device* is None, a new QPixmap will be returned. Otherwise,
the symbol will be rendered into the device specified (See QPainter documentation
for more information).
"""
## Render a spot with the given parameters to a pixmap
penPxWidth = max(np.ceil(pen.widthF()), 1)
if device is None:
device = QtGui.QImage(int(size+penPxWidth), int(size+penPxWidth), QtGui.QImage.Format_ARGB32)
device.fill(0)
p = QtGui.QPainter(device)
try:
p.setRenderHint(p.Antialiasing)
p.translate(device.width()*0.5, device.height()*0.5)
drawSymbol(p, symbol, size, pen, brush)
finally:
p.end()
return device
def makeSymbolPixmap(size, pen, brush, symbol):
warnings.warn(
"This is an internal function that is no longer being used. "
"Will be removed in 0.13",
DeprecationWarning, stacklevel=2
)
img = renderSymbol(symbol, size, pen, brush)
return QtGui.QPixmap(img)
def _mkPen(*args, **kwargs):
"""
Wrapper for fn.mkPen which avoids creating a new QPen object if passed one as its
sole argument. This is used to avoid unnecessary cache misses in SymbolAtlas which
uses the QPen object id in its key.
"""
if len(args) == 1 and isinstance(args[0], QtGui.QPen):
return args[0]
else:
return fn.mkPen(*args, **kwargs)
def _mkBrush(*args, **kwargs):
"""
Wrapper for fn.mkBrush which avoids creating a new QBrush object if passed one as its
sole argument. This is used to avoid unnecessary cache misses in SymbolAtlas which
uses the QBrush object id in its key.
"""
if len(args) == 1 and isinstance(args[0], QtGui.QBrush):
return args[0]
else:
return fn.mkBrush(*args, **kwargs)
class SymbolAtlas(object):
"""
Used to efficiently construct a single QPixmap containing all rendered symbols
for a ScatterPlotItem. This is required for fragment rendering.
Use example:
atlas = SymbolAtlas()
sc1 = atlas[[('o', 5, QPen(..), QBrush(..))]]
sc2 = atlas[[('t', 10, QPen(..), QBrush(..))]]
pm = atlas.pixmap
"""
_idGenerator = itertools.count()
def __init__(self):
self._data = np.zeros((0, 0, 4), dtype=np.ubyte) # numpy array of atlas image
self._coords = {}
self._pixmap = None
self._maxWidth = 0
self._totalWidth = 0
self._totalArea = 0
self._pos = (0, 0)
self._rowShape = (0, 0)
def __getitem__(self, styles):
"""
Given a list of tuples, (symbol, size, pen, brush), return a list of coordinates of
corresponding symbols within the atlas. Note that these coordinates may change if the atlas is rebuilt.
"""
keys = self._keys(styles)
new = {key: style for key, style in zip(keys, styles) if key not in self._coords}
if new:
self._extend(new)
return list(imap(self._coords.__getitem__, keys))
def __len__(self):
return len(self._coords)
@property
def pixmap(self):
if self._pixmap is None:
self._pixmap = self._createPixmap()
return self._pixmap
@property
def maxWidth(self):
return self._maxWidth
def rebuild(self, styles=None):
profiler = debug.Profiler()
if styles is None:
data = []
else:
keys = set(self._keys(styles))
data = list(self._itemData(keys))
self.clear()
if data:
self._extendFromData(data)
def clear(self):
self.__init__()
def diagnostics(self):
n = len(self)
w, h, _ = self._data.shape
a = self._totalArea
return dict(count=n,
width=w,
height=h,
area=w * h,
area_used=1.0 if n == 0 else a / (w * h),
squareness=1.0 if n == 0 else 2 * w * h / (w**2 + h**2))
def _keys(self, styles):
def getId(obj):
try:
return obj._id
except AttributeError:
obj._id = next(SymbolAtlas._idGenerator)
return obj._id
return [
(symbol if isinstance(symbol, (str, int)) else getId(symbol), size, getId(pen), getId(brush))
for symbol, size, pen, brush in styles
]
def _itemData(self, keys):
for key in keys:
y, x, h, w = self._coords[key]
yield key, self._data[x:x + w, y:y + h]
def _extend(self, styles):
profiler = debug.Profiler()
images = []
data = []
for key, style in styles.items():
img = renderSymbol(*style)
arr = fn.imageToArray(img, copy=False, transpose=False)
images.append(img) # keep these to delay garbage collection
data.append((key, arr))
profiler('render')
self._extendFromData(data)
profiler('insert')
def _extendFromData(self, data):
self._pack(data)
# expand array if necessary
wNew, hNew = self._minDataShape()
wOld, hOld, _ = self._data.shape
if (wNew > wOld) or (hNew > hOld):
arr = np.zeros((wNew, hNew, 4), dtype=np.ubyte)
arr[:wOld, :hOld] = self._data
self._data = arr
# insert data into array
for key, arr in data:
y, x, h, w = self._coords[key]
self._data[x:x+w, y:y+h] = arr
self._pixmap = None
def _pack(self, data):
# pack each item rectangle as efficiently as possible into a larger, expanding, approximate square
n = len(self)
wMax = self._maxWidth
wSum = self._totalWidth
aSum = self._totalArea
x, y = self._pos
wRow, hRow = self._rowShape
# update packing statistics
for _, arr in data:
w, h, _ = arr.shape
wMax = max(w, wMax)
wSum += w
aSum += w * h
n += len(data)
# maybe expand row width for squareness and to accommodate largest width
wRowEst = int(wSum / (n ** 0.5))
if wRowEst > 2 * wRow:
wRow = wRowEst
wRow = max(wMax, wRow)
# set coordinates by packing along rows
# sort by rectangle height first to improve packing density
for key, arr in sorted(data, key=lambda data: data[1].shape[1]):
w, h, _ = arr.shape
if x + w > wRow:
# move up a row
x = 0
y += hRow
hRow = h
hRow = max(h, hRow)
self._coords[key] = (y, x, h, w)
x += w
self._maxWidth = wMax
self._totalWidth = wSum
self._totalArea = aSum
self._pos = (x, y)
self._rowShape = (wRow, hRow)
def _minDataShape(self):
x, y = self._pos
w, h = self._rowShape
return int(w), int(y + h)
def _createPixmap(self):
profiler = debug.Profiler()
if self._data.size == 0:
pm = QtGui.QPixmap(0, 0)
else:
img = fn.makeQImage(self._data, copy=False, transpose=False)
pm = QtGui.QPixmap(img)
return pm
class ScatterPlotItem(GraphicsObject):
"""
Displays a set of x/y points. Instances of this class are created
automatically as part of PlotDataItem; these rarely need to be instantiated
directly.
The size, shape, pen, and fill brush may be set for each point individually
or for all points.
============================ ===============================================
**Signals:**
sigPlotChanged(self) Emitted when the data being plotted has changed
sigClicked(self, points, ev) Emitted when points are clicked. Sends a list
of all the points under the mouse pointer.
sigHovered(self, points, ev) Emitted when the item is hovered. Sends a list
of all the points under the mouse pointer.
============================ ===============================================
"""
#sigPointClicked = QtCore.Signal(object, object)
sigClicked = QtCore.Signal(object, object, object)
sigHovered = QtCore.Signal(object, object, object)
sigPlotChanged = QtCore.Signal(object)
def __init__(self, *args, **kargs):
"""
Accepts the same arguments as setData()
"""
profiler = debug.Profiler()
GraphicsObject.__init__(self)
self.picture = None # QPicture used for rendering when pxmode==False
self.fragmentAtlas = SymbolAtlas()
dtype = [
('x', float),
('y', float),
('size', float),
('symbol', object),
('pen', object),
('brush', object),
('visible', bool),
('data', object),
('hovered', bool),
('item', object),
('sourceRect', [
('x', int),
('y', int),
('w', int),
('h', int)
])
]
if _USE_QRECT:
dtype.extend([
('sourceQRect', object),
('targetQRect', object),
('targetQRectValid', bool)
])
self._sourceQRect = {}
self.data = np.empty(0, dtype=dtype)
self.bounds = [None, None] ## caches data bounds
self._maxSpotWidth = 0 ## maximum size of the scale-variant portion of all spots
self._maxSpotPxWidth = 0 ## maximum size of the scale-invariant portion of all spots
self.opts = {
'pxMode': True,
'useCache': True, ## If useCache is False, symbols are re-drawn on every paint.
'antialias': getConfigOption('antialias'),
'compositionMode': None,
'name': None,
'symbol': 'o',
'size': 7,
'pen': fn.mkPen(getConfigOption('foreground')),
'brush': fn.mkBrush(100, 100, 150),
'hoverable': False,
'tip': 'x: {x:.3g}\ny: {y:.3g}\ndata={data}'.format,
}
self.opts.update(
{'hover' + opt.title(): _DEFAULT_STYLE[opt] for opt in ['symbol', 'size', 'pen', 'brush']}
)
profiler()
self.setData(*args, **kargs)
profiler('setData')
#self.setCacheMode(self.DeviceCoordinateCache)
def setData(self, *args, **kargs):
"""
**Ordered Arguments:**
* If there is only one unnamed argument, it will be interpreted like the 'spots' argument.
* If there are two unnamed arguments, they will be interpreted as sequences of x and y values.
====================== ===============================================================================================
**Keyword Arguments:**
*spots* Optional list of dicts. Each dict specifies parameters for a single spot:
{'pos': (x,y), 'size', 'pen', 'brush', 'symbol'}. This is just an alternate method
of passing in data for the corresponding arguments.
*x*,*y* 1D arrays of x,y values.
*pos* 2D structure of x,y pairs (such as Nx2 array or list of tuples)
*pxMode* If True, spots are always the same size regardless of scaling, and size is given in px.
Otherwise, size is in scene coordinates and the spots scale with the view. To ensure
effective caching, QPen and QBrush objects should be reused as much as possible.
Default is True
*symbol* can be one (or a list) of:
* 'o' circle (default)
* 's' square
* 't' triangle
* 'd' diamond
* '+' plus
* any QPainterPath to specify custom symbol shapes. To properly obey the position and size,
custom symbols should be centered at (0,0) and width and height of 1.0. Note that it is also
possible to 'install' custom shapes by setting ScatterPlotItem.Symbols[key] = shape.
*pen* The pen (or list of pens) to use for drawing spot outlines.
*brush* The brush (or list of brushes) to use for filling spots.
*size* The size (or list of sizes) of spots. If *pxMode* is True, this value is in pixels. Otherwise,
it is in the item's local coordinate system.
*data* a list of python objects used to uniquely identify each spot.
*hoverable* If True, sigHovered is emitted with a list of hovered points, a tool tip is shown containing
information about them, and an optional separate style for them is used. Default is False.
*tip* A string-valued function of a spot's (x, y, data) values. Set to None to prevent a tool tip
from being shown.
*hoverSymbol* A single symbol to use for hovered spots. Set to None to keep symbol unchanged. Default is None.
*hoverSize* A single size to use for hovered spots. Set to -1 to keep size unchanged. Default is -1.
*hoverPen* A single pen to use for hovered spots. Set to None to keep pen unchanged. Default is None.
*hoverBrush* A single brush to use for hovered spots. Set to None to keep brush unchanged. Default is None.
*antialias* Whether to draw symbols with antialiasing. Note that if pxMode is True, symbols are
always rendered with antialiasing (since the rendered symbols can be cached, this
incurs very little performance cost)
*compositionMode* If specified, this sets the composition mode used when drawing the
scatter plot (see QPainter::CompositionMode in the Qt documentation).
*name* The name of this item. Names are used for automatically
generating LegendItem entries and by some exporters.
====================== ===============================================================================================
"""
if 'identical' in kargs:
warnings.warn(
"The *identical* functionality is handled automatically now. "
"Will be removed in 0.13.",
DeprecationWarning, stacklevel=2
)
oldData = self.data ## this causes cached pixmaps to be preserved while new data is registered.
self.clear() ## clear out all old data
self.addPoints(*args, **kargs)
def addPoints(self, *args, **kargs):
"""
Add new points to the scatter plot.
Arguments are the same as setData()
"""
## deal with non-keyword arguments
if len(args) == 1:
kargs['spots'] = args[0]
elif len(args) == 2:
kargs['x'] = args[0]
kargs['y'] = args[1]
elif len(args) > 2:
raise Exception('Only accepts up to two non-keyword arguments.')
## convert 'pos' argument to 'x' and 'y'
if 'pos' in kargs:
pos = kargs['pos']
if isinstance(pos, np.ndarray):
kargs['x'] = pos[:,0]
kargs['y'] = pos[:,1]
else:
x = []
y = []
for p in pos:
if isinstance(p, QtCore.QPointF):
x.append(p.x())
y.append(p.y())
else:
x.append(p[0])
y.append(p[1])
kargs['x'] = x
kargs['y'] = y
## determine how many spots we have
if 'spots' in kargs:
numPts = len(kargs['spots'])
elif 'y' in kargs and kargs['y'] is not None:
numPts = len(kargs['y'])
else:
kargs['x'] = []
kargs['y'] = []
numPts = 0
## Clear current SpotItems since the data references they contain will no longer be current
self.data['item'][...] = None
## Extend record array
oldData = self.data
self.data = np.empty(len(oldData)+numPts, dtype=self.data.dtype)
## note that np.empty initializes object fields to None and string fields to ''
self.data[:len(oldData)] = oldData
#for i in range(len(oldData)):
#oldData[i]['item']._data = self.data[i] ## Make sure items have proper reference to new array
newData = self.data[len(oldData):]
newData['size'] = -1 ## indicates to use default size
newData['visible'] = True
if _USE_QRECT:
newData['targetQRect'] = [QtCore.QRectF() for _ in range(numPts)]
newData['targetQRectValid'] = False
if 'spots' in kargs:
spots = kargs['spots']
for i in range(len(spots)):
spot = spots[i]
for k in spot:
if k == 'pos':
pos = spot[k]
if isinstance(pos, QtCore.QPointF):
x,y = pos.x(), pos.y()
else:
x,y = pos[0], pos[1]
newData[i]['x'] = x
newData[i]['y'] = y
elif k == 'pen':
newData[i][k] = _mkPen(spot[k])
elif k == 'brush':
newData[i][k] = _mkBrush(spot[k])
elif k in ['x', 'y', 'size', 'symbol', 'data']:
newData[i][k] = spot[k]
else:
raise Exception("Unknown spot parameter: %s" % k)
elif 'y' in kargs:
newData['x'] = kargs['x']
newData['y'] = kargs['y']
if 'name' in kargs:
self.opts['name'] = kargs['name']
if 'pxMode' in kargs:
self.setPxMode(kargs['pxMode'])
if 'antialias' in kargs:
self.opts['antialias'] = kargs['antialias']
if 'hoverable' in kargs:
self.opts['hoverable'] = bool(kargs['hoverable'])
if 'tip' in kargs:
self.opts['tip'] = kargs['tip']
## Set any extra parameters provided in keyword arguments
for k in ['pen', 'brush', 'symbol', 'size']:
if k in kargs:
setMethod = getattr(self, 'set' + k[0].upper() + k[1:])
setMethod(kargs[k], update=False, dataSet=newData, mask=kargs.get('mask', None))
kh = 'hover' + k.title()
if kh in kargs:
vh = kargs[kh]
if k == 'pen':
vh = _mkPen(vh)
elif k == 'brush':
vh = _mkBrush(vh)
self.opts[kh] = vh
if 'data' in kargs:
self.setPointData(kargs['data'], dataSet=newData)
self.prepareGeometryChange()
self.informViewBoundsChanged()
self.bounds = [None, None]
self.invalidate()
self.updateSpots(newData)
self.sigPlotChanged.emit(self)
def invalidate(self):
## clear any cached drawing state
self.picture = None
self.update()
def getData(self):
return self.data['x'], self.data['y']
def setPoints(self, *args, **kargs):
warnings.warn(
"ScatterPlotItem.setPoints is deprecated, use ScatterPlotItem.setData "
"instead. Will be removed in 0.13",
DeprecationWarning, stacklevel=2
)
return self.setData(*args, **kargs)
def implements(self, interface=None):
ints = ['plotData']
if interface is None:
return ints
return interface in ints
def name(self):
return self.opts.get('name', None)
def setPen(self, *args, **kargs):
"""Set the pen(s) used to draw the outline around each spot.
If a list or array is provided, then the pen for each spot will be set separately.
Otherwise, the arguments are passed to pg.mkPen and used as the default pen for
all spots which do not have a pen explicitly set."""
update = kargs.pop('update', True)
dataSet = kargs.pop('dataSet', self.data)
if len(args) == 1 and (isinstance(args[0], np.ndarray) or isinstance(args[0], list)):
pens = args[0]
if 'mask' in kargs and kargs['mask'] is not None:
pens = pens[kargs['mask']]
if len(pens) != len(dataSet):
raise Exception("Number of pens does not match number of points (%d != %d)" % (len(pens), len(dataSet)))
dataSet['pen'] = list(imap(_mkPen, pens))
else:
self.opts['pen'] = _mkPen(*args, **kargs)
dataSet['sourceRect'] = 0
if update:
self.updateSpots(dataSet)
def setBrush(self, *args, **kargs):
"""Set the brush(es) used to fill the interior of each spot.
If a list or array is provided, then the brush for each spot will be set separately.
Otherwise, the arguments are passed to pg.mkBrush and used as the default brush for
all spots which do not have a brush explicitly set."""
update = kargs.pop('update', True)
dataSet = kargs.pop('dataSet', self.data)
if len(args) == 1 and (isinstance(args[0], np.ndarray) or isinstance(args[0], list)):
brushes = args[0]
if 'mask' in kargs and kargs['mask'] is not None:
brushes = brushes[kargs['mask']]
if len(brushes) != len(dataSet):
raise Exception("Number of brushes does not match number of points (%d != %d)" % (len(brushes), len(dataSet)))
dataSet['brush'] = list(imap(_mkBrush, brushes))
else:
self.opts['brush'] = _mkBrush(*args, **kargs)
dataSet['sourceRect'] = 0
if update:
self.updateSpots(dataSet)
def setSymbol(self, symbol, update=True, dataSet=None, mask=None):
"""Set the symbol(s) used to draw each spot.
If a list or array is provided, then the symbol for each spot will be set separately.
Otherwise, the argument will be used as the default symbol for
all spots which do not have a symbol explicitly set."""
if dataSet is None:
dataSet = self.data
if isinstance(symbol, np.ndarray) or isinstance(symbol, list):
symbols = symbol
if mask is not None:
symbols = symbols[mask]
if len(symbols) != len(dataSet):
raise Exception("Number of symbols does not match number of points (%d != %d)" % (len(symbols), len(dataSet)))
dataSet['symbol'] = symbols
else:
self.opts['symbol'] = symbol
self._spotPixmap = None
dataSet['sourceRect'] = 0
if update:
self.updateSpots(dataSet)
def setSize(self, size, update=True, dataSet=None, mask=None):
"""Set the size(s) used to draw each spot.
If a list or array is provided, then the size for each spot will be set separately.
Otherwise, the argument will be used as the default size for
all spots which do not have a size explicitly set."""
if dataSet is None:
dataSet = self.data
if isinstance(size, np.ndarray) or isinstance(size, list):
sizes = size
if mask is not None:
sizes = sizes[mask]
if len(sizes) != len(dataSet):
raise Exception("Number of sizes does not match number of points (%d != %d)" % (len(sizes), len(dataSet)))
dataSet['size'] = sizes
else:
self.opts['size'] = size
self._spotPixmap = None
dataSet['sourceRect'] = 0
if update:
self.updateSpots(dataSet)
def setPointsVisible(self, visible, update=True, dataSet=None, mask=None):
"""Set whether or not each spot is visible.
If a list or array is provided, then the visibility for each spot will be set separately.
Otherwise, the argument will be used for all spots."""
if dataSet is None:
dataSet = self.data
if isinstance(visible, np.ndarray) or isinstance(visible, list):
visibilities = visible
if mask is not None:
visibilities = visibilities[mask]
if len(visibilities) != len(dataSet):
raise Exception("Number of visibilities does not match number of points (%d != %d)" % (len(visibilities), len(dataSet)))
dataSet['visible'] = visibilities
else:
dataSet['visible'] = visible
dataSet['sourceRect'] = 0
if update:
self.updateSpots(dataSet)
def setPointData(self, data, dataSet=None, mask=None):
if dataSet is None:
dataSet = self.data
if isinstance(data, np.ndarray) or isinstance(data, list):
if mask is not None:
data = data[mask]
if len(data) != len(dataSet):
raise Exception("Length of meta data does not match number of points (%d != %d)" % (len(data), len(dataSet)))
## Bug: If data is a numpy record array, then items from that array must be copied to dataSet one at a time.
## (otherwise they are converted to tuples and thus lose their field names.
if isinstance(data, np.ndarray) and (data.dtype.fields is not None)and len(data.dtype.fields) > 1:
for i, rec in enumerate(data):
dataSet['data'][i] = rec
else:
dataSet['data'] = data
def setPxMode(self, mode):
if self.opts['pxMode'] == mode:
return
self.opts['pxMode'] = mode
self.invalidate()
def updateSpots(self, dataSet=None):
profiler = debug.Profiler()
if dataSet is None:
dataSet = self.data
invalidate = False
if self.opts['pxMode'] and self.opts['useCache']:
mask = dataSet['sourceRect']['w'] == 0
if np.any(mask):
invalidate = True
coords = self.fragmentAtlas[
list(zip(*self._style(['symbol', 'size', 'pen', 'brush'], data=dataSet, idx=mask)))
]
dataSet['sourceRect'][mask] = coords
if _USE_QRECT:
rects = []
for c in coords:
try:
rect = self._sourceQRect[c]
except KeyError:
rect = QtCore.QRectF(*c)
self._sourceQRect[c] = rect
rects.append(rect)
dataSet['sourceQRect'][mask] = rects
dataSet['targetQRectValid'][mask] = False
self._maybeRebuildAtlas()
else:
invalidate = True
self._updateMaxSpotSizes(data=dataSet)
if invalidate:
self.invalidate()
def _maybeRebuildAtlas(self, threshold=4, minlen=1000):
n = len(self.fragmentAtlas)
if (n > minlen) and (n > threshold * len(self.data)):
self.fragmentAtlas.rebuild(
list(zip(*self._style(['symbol', 'size', 'pen', 'brush'])))
)
self.data['sourceRect'] = 0
if _USE_QRECT:
self._sourceQRect.clear()
self.updateSpots()
def _style(self, opts, data=None, idx=None, scale=None):
if data is None:
data = self.data
if idx is None:
idx = np.s_[:]
for opt in opts:
col = data[opt][idx]
if col.base is not None:
col = col.copy()
if self.opts['hoverable']:
val = self.opts['hover' + opt.title()]
if val != _DEFAULT_STYLE[opt]:
col[data['hovered'][idx]] = val
col[np.equal(col, _DEFAULT_STYLE[opt])] = self.opts[opt]
if opt == 'size' and scale is not None:
col *= scale
yield col
def _updateMaxSpotSizes(self, **kwargs):
if self.opts['pxMode'] and self.opts['useCache']:
w, pw = 0, self.fragmentAtlas.maxWidth
else:
w, pw = max(chain([(self._maxSpotWidth, self._maxSpotPxWidth)],
self._measureSpotSizes(**kwargs)))
self._maxSpotWidth = w
self._maxSpotPxWidth = pw
self.bounds = [None, None]
def _measureSpotSizes(self, **kwargs):
"""Generate pairs (width, pxWidth) for spots in data"""
styles = zip(*self._style(['size', 'pen'], **kwargs))
if self.opts['pxMode']:
for size, pen in styles:
yield 0, size + pen.widthF()
else:
for size, pen in styles:
if pen.isCosmetic():
yield size, pen.widthF()
else:
yield size + pen.widthF(), 0
def getSpotOpts(self, recs, scale=1.0):
warnings.warn(
"This is an internal method that is no longer being used. Will be "
"removed in 0.13",
DeprecationWarning, stacklevel=2
)
if recs.ndim == 0:
rec = recs
symbol = rec['symbol']
if symbol is None:
symbol = self.opts['symbol']
size = rec['size']
if size < 0:
size = self.opts['size']
pen = rec['pen']
if pen is None:
pen = self.opts['pen']
brush = rec['brush']
if brush is None:
brush = self.opts['brush']
return (symbol, size*scale, fn.mkPen(pen), fn.mkBrush(brush))
else:
recs = recs.copy()
recs['symbol'][np.equal(recs['symbol'], None)] = self.opts['symbol']
recs['size'][np.equal(recs['size'], -1)] = self.opts['size']
recs['size'] *= scale
recs['pen'][np.equal(recs['pen'], None)] = fn.mkPen(self.opts['pen'])
recs['brush'][np.equal(recs['brush'], None)] = fn.mkBrush(self.opts['brush'])
return recs
def measureSpotSizes(self, dataSet):
warnings.warn(
"This is an internal method that is no longer being used. "
"Will be removed in 0.13.",
DeprecationWarning, stacklevel=2
)
for size, pen in zip(*self._style(['size', 'pen'], data=dataSet)):
## keep track of the maximum spot size and pixel size
width = 0
pxWidth = 0
if self.opts['pxMode']:
pxWidth = size + pen.widthF()
else:
width = size
if pen.isCosmetic():
pxWidth += pen.widthF()
else:
width += pen.widthF()
self._maxSpotWidth = max(self._maxSpotWidth, width)
self._maxSpotPxWidth = max(self._maxSpotPxWidth, pxWidth)
self.bounds = [None, None]
def clear(self):
"""Remove all spots from the scatter plot"""
#self.clearItems()
self._maxSpotWidth = 0
self._maxSpotPxWidth = 0
self.data = np.empty(0, dtype=self.data.dtype)
self.bounds = [None, None]
self.invalidate()
def dataBounds(self, ax, frac=1.0, orthoRange=None):
if frac >= 1.0 and orthoRange is None and self.bounds[ax] is not None:
return self.bounds[ax]
#self.prepareGeometryChange()
if self.data is None or len(self.data) == 0:
return (None, None)
if ax == 0:
d = self.data['x']
d2 = self.data['y']
elif ax == 1:
d = self.data['y']
d2 = self.data['x']
if orthoRange is not None:
mask = (d2 >= orthoRange[0]) * (d2 <= orthoRange[1])
d = d[mask]
d2 = d2[mask]
if d.size == 0:
return (None, None)
if frac >= 1.0:
self.bounds[ax] = (np.nanmin(d) - self._maxSpotWidth*0.7072, np.nanmax(d) + self._maxSpotWidth*0.7072)
return self.bounds[ax]
elif frac <= 0.0:
raise Exception("Value for parameter 'frac' must be > 0. (got %s)" % str(frac))
else:
mask = np.isfinite(d)
d = d[mask]
return np.percentile(d, [50 * (1 - frac), 50 * (1 + frac)])
def pixelPadding(self):
return self._maxSpotPxWidth*0.7072
def boundingRect(self):
(xmn, xmx) = self.dataBounds(ax=0)
(ymn, ymx) = self.dataBounds(ax=1)
if xmn is None or xmx is None:
xmn = 0
xmx = 0
if ymn is None or ymx is None:
ymn = 0
ymx = 0
px = py = 0.0
pxPad = self.pixelPadding()
if pxPad > 0:
# determine length of pixel in local x, y directions
px, py = self.pixelVectors()
try:
px = 0 if px is None else px.length()
except OverflowError:
px = 0
try:
py = 0 if py is None else py.length()
except OverflowError:
py = 0
# return bounds expanded by pixel size
px *= pxPad
py *= pxPad
return QtCore.QRectF(xmn-px, ymn-py, (2*px)+xmx-xmn, (2*py)+ymx-ymn)
def viewTransformChanged(self):
self.prepareGeometryChange()
GraphicsObject.viewTransformChanged(self)
self.bounds = [None, None]
if _USE_QRECT:
self.data['targetQRectValid'] = False
def setExportMode(self, *args, **kwds):
GraphicsObject.setExportMode(self, *args, **kwds)
self.invalidate()
def mapPointsToDevice(self, pts):
warnings.warn(
"This is an internal method that is no longer being used. "
"Will be removed in 0.13",
DeprecationWarning, stacklevel=2
)
# Map point locations to device
tr = self.deviceTransform()
if tr is None:
return None
pts = fn.transformCoordinates(tr, pts)
pts -= self.data['sourceRect']['w'] / 2
pts = np.clip(pts, -2**30, 2**30) ## prevent Qt segmentation fault.
return pts
def getViewMask(self, pts):
warnings.warn(
"This is an internal method that is no longer being used. "
"Will be removed in 0.13",
DeprecationWarning, stacklevel=2
)
# Return bool mask indicating all points that are within viewbox
# pts is expressed in *device coordiantes*
vb = self.getViewBox()
if vb is None:
return None
viewBounds = vb.mapRectToDevice(vb.boundingRect())
w = self.data['sourceRect']['w'] / 2
mask = ((pts[0] + w > viewBounds.left()) &
(pts[0] - w < viewBounds.right()) &
(pts[1] + w > viewBounds.top()) &
(pts[1] - w < viewBounds.bottom())) ## remove out of view points
mask &= self.data['visible']
return mask
@debug.warnOnException ## raising an exception here causes crash
def paint(self, p, *args):
profiler = debug.Profiler()
cmode = self.opts.get('compositionMode', None)
if cmode is not None:
p.setCompositionMode(cmode)
#p.setPen(fn.mkPen('r'))
#p.drawRect(self.boundingRect())
if self._exportOpts is not False:
aa = self._exportOpts.get('antialias', True)
scale = self._exportOpts.get('resolutionScale', 1.0) ## exporting to image; pixel resolution may have changed
else:
aa = self.opts['antialias']
scale = 1.0
if self.opts['pxMode'] is True:
# Cull points that are outside view
viewMask = self._maskAt(self.getViewBox().viewRect())
# Map points using painter's world transform so they are drawn with pixel-valued sizes
pts = np.vstack([self.data['x'], self.data['y']])
pts = fn.transformCoordinates(p.transform(), pts)
pts = np.clip(pts, -2 ** 30, 2 ** 30) # prevent Qt segmentation fault.
p.resetTransform()
if self.opts['useCache'] and self._exportOpts is False:
# Map pts to (x, y) coordinates of targetRect
pts -= self.data['sourceRect']['w'] / 2
# Draw symbols from pre-rendered atlas
pm = self.fragmentAtlas.pixmap
if _USE_QRECT:
# Update targetRects if necessary
updateMask = viewMask & (~self.data['targetQRectValid'])
if np.any(updateMask):
x, y = pts[:, updateMask].tolist()
tr = self.data['targetQRect'][updateMask].tolist()
w = self.data['sourceRect']['w'][updateMask].tolist()
list(imap(QtCore.QRectF.setRect, tr, x, y, w, w))
self.data['targetQRectValid'][updateMask] = True
profiler('prep')
if QT_LIB == 'PyQt4':
p.drawPixmapFragments(
self.data['targetQRect'][viewMask].tolist(),
self.data['sourceQRect'][viewMask].tolist(),
pm
)
else:
list(imap(p.drawPixmap,
self.data['targetQRect'][viewMask].tolist(),
repeat(pm),
self.data['sourceQRect'][viewMask].tolist()))
profiler('draw')
else:
x, y = pts[:, viewMask].astype(int)
sr = self.data['sourceRect'][viewMask]
profiler('prep')
list(imap(p.drawPixmap,
x.tolist(), y.tolist(), repeat(pm),
sr['x'].tolist(), sr['y'].tolist(), sr['w'].tolist(), sr['h'].tolist()))
profiler('draw')
else:
# render each symbol individually
p.setRenderHint(p.Antialiasing, aa)
for pt, style in zip(
pts[:, viewMask].T,
zip(*(self._style(['symbol', 'size', 'pen', 'brush'], idx=viewMask, scale=scale)))
):
p.resetTransform()
p.translate(*pt)
drawSymbol(p, *style)
else:
if self.picture is None:
self.picture = QtGui.QPicture()
p2 = QtGui.QPainter(self.picture)
for x, y, style in zip(
self.data['x'],
self.data['y'],
zip(*self._style(['symbol', 'size', 'pen', 'brush'], scale=scale))
):
p2.resetTransform()
p2.translate(x, y)
drawSymbol(p2, *style)
p2.end()
p.setRenderHint(p.Antialiasing, aa)
self.picture.play(p)
def points(self):
m = np.equal(self.data['item'], None)
for i in np.argwhere(m)[:, 0]:
rec = self.data[i]
if rec['item'] is None:
rec['item'] = SpotItem(rec, self, i)
return self.data['item']
def pointsAt(self, pos):
return self.points()[self._maskAt(pos)][::-1]
def _maskAt(self, obj):
"""
Return a boolean mask indicating all points that overlap obj, a QPointF or QRectF.
"""
if isinstance(obj, QtCore.QPointF):
l = r = obj.x()
t = b = obj.y()
elif isinstance(obj, QtCore.QRectF):
l = obj.left()
r = obj.right()
t = obj.top()
b = obj.bottom()
else:
raise TypeError
if self.opts['pxMode'] and self.opts['useCache']:
w = self.data['sourceRect']['w']
h = self.data['sourceRect']['h']
else:
s, = self._style(['size'])
w = h = s
w = w / 2
h = h / 2
if self.opts['pxMode']:
# determine length of pixel in local x, y directions
px, py = self.pixelVectors()
try:
px = 0 if px is None else px.length()
except OverflowError:
px = 0
try:
py = 0 if py is None else py.length()
except OverflowError:
py = 0
w *= px
h *= py
return (self.data['visible']
& (self.data['x'] + w > l)
& (self.data['x'] - w < r)
& (self.data['y'] + h > t)
& (self.data['y'] - h < b))
def mouseClickEvent(self, ev):
if ev.button() == QtCore.Qt.LeftButton:
pts = self.pointsAt(ev.pos())
if len(pts) > 0:
self.ptsClicked = pts
ev.accept()
self.sigClicked.emit(self, self.ptsClicked, ev)
else:
#print "no spots"
ev.ignore()
else:
ev.ignore()
def hoverEvent(self, ev):
if self.opts['hoverable']:
old = self.data['hovered']
if ev.exit:
new = np.zeros_like(self.data['hovered'])
else:
new = self._maskAt(ev.pos())
if self._hasHoverStyle():
self.data['sourceRect'][old ^ new] = 0
self.data['hovered'] = new
self.updateSpots()
points = self.points()[new][::-1]
# Show information about hovered points in a tool tip
vb = self.getViewBox()
if vb is not None and self.opts['tip'] is not None:
cutoff = 3
tip = [self.opts['tip'](x=pt.pos().x(), y=pt.pos().y(), data=pt.data())
for pt in points[:cutoff]]
if len(points) > cutoff:
tip.append('({} others...)'.format(len(points) - cutoff))
vb.setToolTip('\n\n'.join(tip))
self.sigHovered.emit(self, points, ev)
def _hasHoverStyle(self):
return any(self.opts['hover' + opt.title()] != _DEFAULT_STYLE[opt]
for opt in ['symbol', 'size', 'pen', 'brush'])
class SpotItem(object):
"""
Class referring to individual spots in a scatter plot.
These can be retrieved by calling ScatterPlotItem.points() or
by connecting to the ScatterPlotItem's click signals.
"""
def __init__(self, data, plot, index):
self._data = data
self._index = index
# SpotItems are kept in plot.data["items"] numpy object array which
# does not support cyclic garbage collection (numpy issue 6581).
# Keeping a strong ref to plot here would leak the cycle
self.__plot_ref = weakref.ref(plot)
@property
def _plot(self):
return self.__plot_ref()
def data(self):
"""Return the user data associated with this spot."""
return self._data['data']
def index(self):
"""Return the index of this point as given in the scatter plot data."""
return self._index
def size(self):
"""Return the size of this spot.
If the spot has no explicit size set, then return the ScatterPlotItem's default size instead."""
if self._data['size'] == -1:
return self._plot.opts['size']
else:
return self._data['size']
def pos(self):
return Point(self._data['x'], self._data['y'])
def viewPos(self):
return self._plot.mapToView(self.pos())
def setSize(self, size):
"""Set the size of this spot.
If the size is set to -1, then the ScatterPlotItem's default size
will be used instead."""
self._data['size'] = size
self.updateItem()
def symbol(self):
"""Return the symbol of this spot.
If the spot has no explicit symbol set, then return the ScatterPlotItem's default symbol instead.
"""
symbol = self._data['symbol']
if symbol is None:
symbol = self._plot.opts['symbol']
try:
n = int(symbol)
symbol = list(Symbols.keys())[n % len(Symbols)]
except:
pass
return symbol
def setSymbol(self, symbol):
"""Set the symbol for this spot.
If the symbol is set to '', then the ScatterPlotItem's default symbol will be used instead."""
self._data['symbol'] = symbol
self.updateItem()
def pen(self):
pen = self._data['pen']
if pen is None:
pen = self._plot.opts['pen']
return fn.mkPen(pen)
def setPen(self, *args, **kargs):
"""Set the outline pen for this spot"""
self._data['pen'] = _mkPen(*args, **kargs)
self.updateItem()
def resetPen(self):
"""Remove the pen set for this spot; the scatter plot's default pen will be used instead."""
self._data['pen'] = None ## Note this is NOT the same as calling setPen(None)
self.updateItem()
def brush(self):
brush = self._data['brush']
if brush is None:
brush = self._plot.opts['brush']
return fn.mkBrush(brush)
def setBrush(self, *args, **kargs):
"""Set the fill brush for this spot"""
self._data['brush'] = _mkBrush(*args, **kargs)
self.updateItem()
def resetBrush(self):
"""Remove the brush set for this spot; the scatter plot's default brush will be used instead."""
self._data['brush'] = None ## Note this is NOT the same as calling setBrush(None)
self.updateItem()
def isVisible(self):
return self._data['visible']
def setVisible(self, visible):
"""Set whether or not this spot is visible."""
self._data['visible'] = visible
self.updateItem()
def setData(self, data):
"""Set the user-data associated with this spot"""
self._data['data'] = data
def updateItem(self):
self._data['sourceRect'] = (0, 0, 0, 0) # numpy <=1.13.1 won't let us set this with a single zero
self._plot.updateSpots(self._data.reshape(1))