698 lines
27 KiB
Python
698 lines
27 KiB
Python
import pyqtgraph.metaarray as metaarray
|
|
from pyqtgraph.Qt import QtCore
|
|
from .GraphicsObject import GraphicsObject
|
|
from .PlotCurveItem import PlotCurveItem
|
|
from .ScatterPlotItem import ScatterPlotItem
|
|
import numpy as np
|
|
import scipy
|
|
import pyqtgraph.functions as fn
|
|
import pyqtgraph.debug as debug
|
|
import pyqtgraph as pg
|
|
|
|
class PlotDataItem(GraphicsObject):
|
|
"""
|
|
**Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>`
|
|
|
|
GraphicsItem for displaying plot curves, scatter plots, or both.
|
|
While it is possible to use :class:`PlotCurveItem <pyqtgraph.PlotCurveItem>` or
|
|
:class:`ScatterPlotItem <pyqtgraph.ScatterPlotItem>` individually, this class
|
|
provides a unified interface to both. Inspances of :class:`PlotDataItem` are
|
|
usually created by plot() methods such as :func:`pyqtgraph.plot` and
|
|
:func:`PlotItem.plot() <pyqtgraph.PlotItem.plot>`.
|
|
|
|
============================== ==============================================
|
|
**Signals:**
|
|
sigPlotChanged(self) Emitted when the data in this item is updated.
|
|
sigClicked(self) Emitted when the item is clicked.
|
|
sigPointsClicked(self, points) Emitted when a plot point is clicked
|
|
Sends the list of points under the mouse.
|
|
============================== ==============================================
|
|
"""
|
|
|
|
sigPlotChanged = QtCore.Signal(object)
|
|
sigClicked = QtCore.Signal(object)
|
|
sigPointsClicked = QtCore.Signal(object, object)
|
|
|
|
def __init__(self, *args, **kargs):
|
|
"""
|
|
There are many different ways to create a PlotDataItem:
|
|
|
|
**Data initialization arguments:** (x,y data only)
|
|
|
|
=================================== ======================================
|
|
PlotDataItem(xValues, yValues) x and y values may be any sequence (including ndarray) of real numbers
|
|
PlotDataItem(yValues) y values only -- x will be automatically set to range(len(y))
|
|
PlotDataItem(x=xValues, y=yValues) x and y given by keyword arguments
|
|
PlotDataItem(ndarray(Nx2)) numpy array with shape (N, 2) where x=data[:,0] and y=data[:,1]
|
|
=================================== ======================================
|
|
|
|
**Data initialization arguments:** (x,y data AND may include spot style)
|
|
|
|
=========================== =========================================
|
|
PlotDataItem(recarray) numpy array with dtype=[('x', float), ('y', float), ...]
|
|
PlotDataItem(list-of-dicts) [{'x': x, 'y': y, ...}, ...]
|
|
PlotDataItem(dict-of-lists) {'x': [...], 'y': [...], ...}
|
|
PlotDataItem(MetaArray) 1D array of Y values with X sepecified as axis values
|
|
OR 2D array with a column 'y' and extra columns as needed.
|
|
=========================== =========================================
|
|
|
|
**Line style keyword arguments:**
|
|
========== ================================================
|
|
pen Pen to use for drawing line between points.
|
|
Default is solid grey, 1px width. Use None to disable line drawing.
|
|
May be any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>`
|
|
shadowPen Pen for secondary line to draw behind the primary line. disabled by default.
|
|
May be any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>`
|
|
fillLevel Fill the area between the curve and fillLevel
|
|
fillBrush Fill to use when fillLevel is specified.
|
|
May be any single argument accepted by :func:`mkBrush() <pyqtgraph.mkBrush>`
|
|
========== ================================================
|
|
|
|
**Point style keyword arguments:** (see :func:`ScatterPlotItem.setData() <pyqtgraph.ScatterPlotItem.setData>` for more information)
|
|
|
|
============ ================================================
|
|
symbol Symbol to use for drawing points OR list of symbols, one per point. Default is no symbol.
|
|
Options are o, s, t, d, +, or any QPainterPath
|
|
symbolPen Outline pen for drawing points OR list of pens, one per point.
|
|
May be any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>`
|
|
symbolBrush Brush for filling points OR list of brushes, one per point.
|
|
May be any single argument accepted by :func:`mkBrush() <pyqtgraph.mkBrush>`
|
|
symbolSize Diameter of symbols OR list of diameters.
|
|
pxMode (bool) If True, then symbolSize is specified in pixels. If False, then symbolSize is
|
|
specified in data coordinates.
|
|
============ ================================================
|
|
|
|
**Optimization keyword arguments:**
|
|
|
|
========== =====================================================================
|
|
antialias (bool) By default, antialiasing is disabled to improve performance.
|
|
Note that in some cases (in particluar, when pxMode=True), points
|
|
will be rendered antialiased even if this is set to False.
|
|
identical *deprecated*
|
|
decimate (int) sub-sample data by selecting every nth sample before plotting
|
|
========== =====================================================================
|
|
|
|
**Meta-info keyword arguments:**
|
|
|
|
========== ================================================
|
|
name name of dataset. This would appear in a legend
|
|
========== ================================================
|
|
"""
|
|
GraphicsObject.__init__(self)
|
|
self.setFlag(self.ItemHasNoContents)
|
|
self.xData = None
|
|
self.yData = None
|
|
self.xDisp = None
|
|
self.yDisp = None
|
|
#self.curves = []
|
|
#self.scatters = []
|
|
self.curve = PlotCurveItem()
|
|
self.scatter = ScatterPlotItem()
|
|
self.curve.setParentItem(self)
|
|
self.scatter.setParentItem(self)
|
|
|
|
self.curve.sigClicked.connect(self.curveClicked)
|
|
self.scatter.sigClicked.connect(self.scatterClicked)
|
|
|
|
|
|
#self.clear()
|
|
self.opts = {
|
|
'fftMode': False,
|
|
'logMode': [False, False],
|
|
'downsample': False,
|
|
'alphaHint': 1.0,
|
|
'alphaMode': False,
|
|
|
|
'pen': (200,200,200),
|
|
'shadowPen': None,
|
|
'fillLevel': None,
|
|
'fillBrush': None,
|
|
|
|
'symbol': None,
|
|
'symbolSize': 10,
|
|
'symbolPen': (200,200,200),
|
|
'symbolBrush': (50, 50, 150),
|
|
'pxMode': True,
|
|
|
|
'antialias': pg.getConfigOption('antialias'),
|
|
'pointMode': None,
|
|
|
|
'data': None,
|
|
}
|
|
self.setData(*args, **kargs)
|
|
|
|
def implements(self, interface=None):
|
|
ints = ['plotData']
|
|
if interface is None:
|
|
return ints
|
|
return interface in ints
|
|
|
|
def boundingRect(self):
|
|
return QtCore.QRectF() ## let child items handle this
|
|
|
|
def setAlpha(self, alpha, auto):
|
|
if self.opts['alphaHint'] == alpha and self.opts['alphaMode'] == auto:
|
|
return
|
|
self.opts['alphaHint'] = alpha
|
|
self.opts['alphaMode'] = auto
|
|
self.setOpacity(alpha)
|
|
#self.update()
|
|
|
|
def setFftMode(self, mode):
|
|
if self.opts['fftMode'] == mode:
|
|
return
|
|
self.opts['fftMode'] = mode
|
|
self.xDisp = self.yDisp = None
|
|
self.updateItems()
|
|
|
|
def setLogMode(self, xMode, yMode):
|
|
if self.opts['logMode'] == [xMode, yMode]:
|
|
return
|
|
self.opts['logMode'] = [xMode, yMode]
|
|
self.xDisp = self.yDisp = None
|
|
self.updateItems()
|
|
|
|
def setPointMode(self, mode):
|
|
if self.opts['pointMode'] == mode:
|
|
return
|
|
self.opts['pointMode'] = mode
|
|
self.update()
|
|
|
|
def setPen(self, *args, **kargs):
|
|
"""
|
|
| Sets the pen used to draw lines between points.
|
|
| *pen* can be a QPen or any argument accepted by :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>`
|
|
"""
|
|
pen = fn.mkPen(*args, **kargs)
|
|
self.opts['pen'] = pen
|
|
#self.curve.setPen(pen)
|
|
#for c in self.curves:
|
|
#c.setPen(pen)
|
|
#self.update()
|
|
self.updateItems()
|
|
|
|
def setShadowPen(self, *args, **kargs):
|
|
"""
|
|
| Sets the shadow pen used to draw lines between points (this is for enhancing contrast or
|
|
emphacizing data).
|
|
| This line is drawn behind the primary pen (see :func:`setPen() <pyqtgraph.PlotDataItem.setPen>`)
|
|
and should generally be assigned greater width than the primary pen.
|
|
| *pen* can be a QPen or any argument accepted by :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>`
|
|
"""
|
|
pen = fn.mkPen(*args, **kargs)
|
|
self.opts['shadowPen'] = pen
|
|
#for c in self.curves:
|
|
#c.setPen(pen)
|
|
#self.update()
|
|
self.updateItems()
|
|
|
|
def setFillBrush(self, *args, **kargs):
|
|
brush = fn.mkBrush(*args, **kargs)
|
|
if self.opts['fillBrush'] == brush:
|
|
return
|
|
self.opts['fillBrush'] = brush
|
|
self.updateItems()
|
|
|
|
def setBrush(self, *args, **kargs):
|
|
return self.setFillBrush(*args, **kargs)
|
|
|
|
def setFillLevel(self, level):
|
|
if self.opts['fillLevel'] == level:
|
|
return
|
|
self.opts['fillLevel'] = level
|
|
self.updateItems()
|
|
|
|
def setSymbol(self, symbol):
|
|
if self.opts['symbol'] == symbol:
|
|
return
|
|
self.opts['symbol'] = symbol
|
|
#self.scatter.setSymbol(symbol)
|
|
self.updateItems()
|
|
|
|
def setSymbolPen(self, *args, **kargs):
|
|
pen = fn.mkPen(*args, **kargs)
|
|
if self.opts['symbolPen'] == pen:
|
|
return
|
|
self.opts['symbolPen'] = pen
|
|
#self.scatter.setSymbolPen(pen)
|
|
self.updateItems()
|
|
|
|
|
|
|
|
def setSymbolBrush(self, *args, **kargs):
|
|
brush = fn.mkBrush(*args, **kargs)
|
|
if self.opts['symbolBrush'] == brush:
|
|
return
|
|
self.opts['symbolBrush'] = brush
|
|
#self.scatter.setSymbolBrush(brush)
|
|
self.updateItems()
|
|
|
|
|
|
def setSymbolSize(self, size):
|
|
if self.opts['symbolSize'] == size:
|
|
return
|
|
self.opts['symbolSize'] = size
|
|
#self.scatter.setSymbolSize(symbolSize)
|
|
self.updateItems()
|
|
|
|
def setDownsampling(self, ds):
|
|
if self.opts['downsample'] == ds:
|
|
return
|
|
self.opts['downsample'] = ds
|
|
self.xDisp = self.yDisp = None
|
|
self.updateItems()
|
|
|
|
def setData(self, *args, **kargs):
|
|
"""
|
|
Clear any data displayed by this item and display new data.
|
|
See :func:`__init__() <pyqtgraph.PlotDataItem.__init__>` for details; it accepts the same arguments.
|
|
"""
|
|
#self.clear()
|
|
prof = debug.Profiler('PlotDataItem.setData (0x%x)' % id(self), disabled=True)
|
|
y = None
|
|
x = None
|
|
if len(args) == 1:
|
|
data = args[0]
|
|
dt = dataType(data)
|
|
if dt == 'empty':
|
|
pass
|
|
elif dt == 'listOfValues':
|
|
y = np.array(data)
|
|
elif dt == 'Nx2array':
|
|
x = data[:,0]
|
|
y = data[:,1]
|
|
elif dt == 'recarray' or dt == 'dictOfLists':
|
|
if 'x' in data:
|
|
x = np.array(data['x'])
|
|
if 'y' in data:
|
|
y = np.array(data['y'])
|
|
elif dt == 'listOfDicts':
|
|
if 'x' in data[0]:
|
|
x = np.array([d.get('x',None) for d in data])
|
|
if 'y' in data[0]:
|
|
y = np.array([d.get('y',None) for d in data])
|
|
for k in ['data', 'symbolSize', 'symbolPen', 'symbolBrush', 'symbolShape']:
|
|
if k in data:
|
|
kargs[k] = [d.get(k, None) for d in data]
|
|
elif dt == 'MetaArray':
|
|
y = data.view(np.ndarray)
|
|
x = data.xvals(0).view(np.ndarray)
|
|
else:
|
|
raise Exception('Invalid data type %s' % type(data))
|
|
|
|
elif len(args) == 2:
|
|
seq = ('listOfValues', 'MetaArray')
|
|
if dataType(args[0]) not in seq or dataType(args[1]) not in seq:
|
|
raise Exception('When passing two unnamed arguments, both must be a list or array of values. (got %s, %s)' % (str(type(args[0])), str(type(args[1]))))
|
|
if not isinstance(args[0], np.ndarray):
|
|
x = np.array(args[0])
|
|
else:
|
|
x = args[0].view(np.ndarray)
|
|
if not isinstance(args[1], np.ndarray):
|
|
y = np.array(args[1])
|
|
else:
|
|
y = args[1].view(np.ndarray)
|
|
|
|
if 'x' in kargs:
|
|
x = kargs['x']
|
|
if 'y' in kargs:
|
|
y = kargs['y']
|
|
|
|
prof.mark('interpret data')
|
|
## pull in all style arguments.
|
|
## Use self.opts to fill in anything not present in kargs.
|
|
|
|
if 'name' in kargs:
|
|
self.opts['name'] = kargs['name']
|
|
|
|
## if symbol pen/brush are given with no symbol, then assume symbol is 'o'
|
|
|
|
if 'symbol' not in kargs and ('symbolPen' in kargs or 'symbolBrush' in kargs or 'symbolSize' in kargs):
|
|
kargs['symbol'] = 'o'
|
|
|
|
if 'brush' in kargs:
|
|
kargs['fillBrush'] = kargs['brush']
|
|
|
|
for k in list(self.opts.keys()):
|
|
if k in kargs:
|
|
self.opts[k] = kargs[k]
|
|
|
|
#curveArgs = {}
|
|
#for k in ['pen', 'shadowPen', 'fillLevel', 'brush']:
|
|
#if k in kargs:
|
|
#self.opts[k] = kargs[k]
|
|
#curveArgs[k] = self.opts[k]
|
|
|
|
#scatterArgs = {}
|
|
#for k,v in [('symbolPen','pen'), ('symbolBrush','brush'), ('symbol','symbol')]:
|
|
#if k in kargs:
|
|
#self.opts[k] = kargs[k]
|
|
#scatterArgs[v] = self.opts[k]
|
|
|
|
|
|
if y is None:
|
|
return
|
|
if y is not None and x is None:
|
|
x = np.arange(len(y))
|
|
|
|
if isinstance(x, list):
|
|
x = np.array(x)
|
|
if isinstance(y, list):
|
|
y = np.array(y)
|
|
|
|
self.xData = x.view(np.ndarray) ## one last check to make sure there are no MetaArrays getting by
|
|
self.yData = y.view(np.ndarray)
|
|
self.xDisp = None
|
|
self.yDisp = None
|
|
prof.mark('set data')
|
|
|
|
self.updateItems()
|
|
prof.mark('update items')
|
|
|
|
view = self.getViewBox()
|
|
if view is not None:
|
|
view.itemBoundsChanged(self) ## inform view so it can update its range if it wants
|
|
|
|
self.sigPlotChanged.emit(self)
|
|
prof.mark('emit')
|
|
prof.finish()
|
|
|
|
|
|
def updateItems(self):
|
|
|
|
curveArgs = {}
|
|
for k,v in [('pen','pen'), ('shadowPen','shadowPen'), ('fillLevel','fillLevel'), ('fillBrush', 'brush'), ('antialias', 'antialias')]:
|
|
curveArgs[v] = self.opts[k]
|
|
|
|
scatterArgs = {}
|
|
for k,v in [('symbolPen','pen'), ('symbolBrush','brush'), ('symbol','symbol'), ('symbolSize', 'size'), ('data', 'data'), ('pxMode', 'pxMode'), ('antialias', 'antialias')]:
|
|
if k in self.opts:
|
|
scatterArgs[v] = self.opts[k]
|
|
|
|
x,y = self.getData()
|
|
|
|
if curveArgs['pen'] is not None or (curveArgs['brush'] is not None and curveArgs['fillLevel'] is not None):
|
|
self.curve.setData(x=x, y=y, **curveArgs)
|
|
self.curve.show()
|
|
else:
|
|
self.curve.hide()
|
|
|
|
if scatterArgs['symbol'] is not None:
|
|
self.scatter.setData(x=x, y=y, **scatterArgs)
|
|
self.scatter.show()
|
|
else:
|
|
self.scatter.hide()
|
|
|
|
|
|
def getData(self):
|
|
if self.xData is None:
|
|
return (None, None)
|
|
if self.xDisp is None:
|
|
nanMask = np.isnan(self.xData) | np.isnan(self.yData) | np.isinf(self.xData) | np.isinf(self.yData)
|
|
if any(nanMask):
|
|
x = self.xData[~nanMask]
|
|
y = self.yData[~nanMask]
|
|
else:
|
|
x = self.xData
|
|
y = self.yData
|
|
ds = self.opts['downsample']
|
|
if ds > 1:
|
|
x = x[::ds]
|
|
#y = resample(y[:len(x)*ds], len(x)) ## scipy.signal.resample causes nasty ringing
|
|
y = y[::ds]
|
|
if self.opts['fftMode']:
|
|
f = np.fft.fft(y) / len(y)
|
|
y = abs(f[1:len(f)/2])
|
|
dt = x[-1] - x[0]
|
|
x = np.linspace(0, 0.5*len(x)/dt, len(y))
|
|
if self.opts['logMode'][0]:
|
|
x = np.log10(x)
|
|
if self.opts['logMode'][1]:
|
|
y = np.log10(y)
|
|
if any(self.opts['logMode']): ## re-check for NANs after log
|
|
nanMask = np.isinf(x) | np.isinf(y) | np.isnan(x) | np.isnan(y)
|
|
if any(nanMask):
|
|
x = x[~nanMask]
|
|
y = y[~nanMask]
|
|
self.xDisp = x
|
|
self.yDisp = y
|
|
#print self.yDisp.shape, self.yDisp.min(), self.yDisp.max()
|
|
#print self.xDisp.shape, self.xDisp.min(), self.xDisp.max()
|
|
return self.xDisp, self.yDisp
|
|
|
|
def dataBounds(self, ax, frac=1.0, orthoRange=None):
|
|
"""
|
|
Returns the range occupied by the data (along a specific axis) in this item.
|
|
This method is called by ViewBox when auto-scaling.
|
|
|
|
=============== =============================================================
|
|
**Arguments:**
|
|
ax (0 or 1) the axis for which to return this item's data range
|
|
frac (float 0.0-1.0) Specifies what fraction of the total data
|
|
range to return. By default, the entire range is returned.
|
|
This allows the ViewBox to ignore large spikes in the data
|
|
when auto-scaling.
|
|
orthoRange ([min,max] or None) Specifies that only the data within the
|
|
given range (orthogonal to *ax*) should me measured when
|
|
returning the data range. (For example, a ViewBox might ask
|
|
what is the y-range of all data with x-values between min
|
|
and max)
|
|
=============== =============================================================
|
|
"""
|
|
if frac <= 0.0:
|
|
raise Exception("Value for parameter 'frac' must be > 0. (got %s)" % str(frac))
|
|
|
|
(x, y) = self.getData()
|
|
if x is None or len(x) == 0:
|
|
return None
|
|
|
|
if ax == 0:
|
|
d = x
|
|
d2 = y
|
|
elif ax == 1:
|
|
d = y
|
|
d2 = x
|
|
|
|
if orthoRange is not None:
|
|
mask = (d2 >= orthoRange[0]) * (d2 <= orthoRange[1])
|
|
d = d[mask]
|
|
#d2 = d2[mask]
|
|
|
|
if len(d) > 0:
|
|
if frac >= 1.0:
|
|
return (np.min(d), np.max(d))
|
|
else:
|
|
return (scipy.stats.scoreatpercentile(d, 50 - (frac * 50)), scipy.stats.scoreatpercentile(d, 50 + (frac * 50)))
|
|
else:
|
|
return None
|
|
|
|
|
|
def clear(self):
|
|
#for i in self.curves+self.scatters:
|
|
#if i.scene() is not None:
|
|
#i.scene().removeItem(i)
|
|
#self.curves = []
|
|
#self.scatters = []
|
|
self.xData = None
|
|
self.yData = None
|
|
self.xDisp = None
|
|
self.yDisp = None
|
|
self.curve.setData([])
|
|
self.scatter.setData([])
|
|
|
|
def appendData(self, *args, **kargs):
|
|
pass
|
|
|
|
def curveClicked(self):
|
|
self.sigClicked.emit(self)
|
|
|
|
def scatterClicked(self, plt, points):
|
|
self.sigClicked.emit(self)
|
|
self.sigPointsClicked.emit(self, points)
|
|
|
|
|
|
def dataType(obj):
|
|
if hasattr(obj, '__len__') and len(obj) == 0:
|
|
return 'empty'
|
|
if isinstance(obj, dict):
|
|
return 'dictOfLists'
|
|
elif isSequence(obj):
|
|
first = obj[0]
|
|
|
|
if (hasattr(obj, 'implements') and obj.implements('MetaArray')):
|
|
return 'MetaArray'
|
|
elif isinstance(obj, np.ndarray):
|
|
if obj.ndim == 1:
|
|
if obj.dtype.names is None:
|
|
return 'listOfValues'
|
|
else:
|
|
return 'recarray'
|
|
elif obj.ndim == 2 and obj.dtype.names is None and obj.shape[1] == 2:
|
|
return 'Nx2array'
|
|
else:
|
|
raise Exception('array shape must be (N,) or (N,2); got %s instead' % str(obj.shape))
|
|
elif isinstance(first, dict):
|
|
return 'listOfDicts'
|
|
else:
|
|
return 'listOfValues'
|
|
|
|
|
|
def isSequence(obj):
|
|
return hasattr(obj, '__iter__') or isinstance(obj, np.ndarray) or (hasattr(obj, 'implements') and obj.implements('MetaArray'))
|
|
|
|
|
|
|
|
#class TableData:
|
|
#"""
|
|
#Class for presenting multiple forms of tabular data through a consistent interface.
|
|
#May contain:
|
|
#- numpy record array
|
|
#- list-of-dicts (all dicts are _not_ required to have the same keys)
|
|
#- dict-of-lists
|
|
#- dict (single record)
|
|
#Note: if all the values in this record are lists, it will be interpreted as multiple records
|
|
|
|
#Data can be accessed and modified by column, by row, or by value
|
|
#data[columnName]
|
|
#data[rowId]
|
|
#data[columnName, rowId] = value
|
|
#data[columnName] = [value, value, ...]
|
|
#data[rowId] = {columnName: value, ...}
|
|
#"""
|
|
|
|
#def __init__(self, data):
|
|
#self.data = data
|
|
#if isinstance(data, np.ndarray):
|
|
#self.mode = 'array'
|
|
#elif isinstance(data, list):
|
|
#self.mode = 'list'
|
|
#elif isinstance(data, dict):
|
|
#types = set(map(type, data.values()))
|
|
### dict may be a dict-of-lists or a single record
|
|
#types -= set([list, np.ndarray]) ## if dict contains any non-sequence values, it is probably a single record.
|
|
#if len(types) != 0:
|
|
#self.data = [self.data]
|
|
#self.mode = 'list'
|
|
#else:
|
|
#self.mode = 'dict'
|
|
#elif isinstance(data, TableData):
|
|
#self.data = data.data
|
|
#self.mode = data.mode
|
|
#else:
|
|
#raise TypeError(type(data))
|
|
|
|
#for fn in ['__getitem__', '__setitem__']:
|
|
#setattr(self, fn, getattr(self, '_TableData'+fn+self.mode))
|
|
|
|
#def originalData(self):
|
|
#return self.data
|
|
|
|
#def toArray(self):
|
|
#if self.mode == 'array':
|
|
#return self.data
|
|
#if len(self) < 1:
|
|
##return np.array([]) ## need to return empty array *with correct columns*, but this is very difficult, so just return None
|
|
#return None
|
|
#rec1 = self[0]
|
|
#dtype = functions.suggestRecordDType(rec1)
|
|
##print rec1, dtype
|
|
#arr = np.empty(len(self), dtype=dtype)
|
|
#arr[0] = tuple(rec1.values())
|
|
#for i in xrange(1, len(self)):
|
|
#arr[i] = tuple(self[i].values())
|
|
#return arr
|
|
|
|
#def __getitem__array(self, arg):
|
|
#if isinstance(arg, tuple):
|
|
#return self.data[arg[0]][arg[1]]
|
|
#else:
|
|
#return self.data[arg]
|
|
|
|
#def __getitem__list(self, arg):
|
|
#if isinstance(arg, basestring):
|
|
#return [d.get(arg, None) for d in self.data]
|
|
#elif isinstance(arg, int):
|
|
#return self.data[arg]
|
|
#elif isinstance(arg, tuple):
|
|
#arg = self._orderArgs(arg)
|
|
#return self.data[arg[0]][arg[1]]
|
|
#else:
|
|
#raise TypeError(type(arg))
|
|
|
|
#def __getitem__dict(self, arg):
|
|
#if isinstance(arg, basestring):
|
|
#return self.data[arg]
|
|
#elif isinstance(arg, int):
|
|
#return dict([(k, v[arg]) for k, v in self.data.iteritems()])
|
|
#elif isinstance(arg, tuple):
|
|
#arg = self._orderArgs(arg)
|
|
#return self.data[arg[1]][arg[0]]
|
|
#else:
|
|
#raise TypeError(type(arg))
|
|
|
|
#def __setitem__array(self, arg, val):
|
|
#if isinstance(arg, tuple):
|
|
#self.data[arg[0]][arg[1]] = val
|
|
#else:
|
|
#self.data[arg] = val
|
|
|
|
#def __setitem__list(self, arg, val):
|
|
#if isinstance(arg, basestring):
|
|
#if len(val) != len(self.data):
|
|
#raise Exception("Values (%d) and data set (%d) are not the same length." % (len(val), len(self.data)))
|
|
#for i, rec in enumerate(self.data):
|
|
#rec[arg] = val[i]
|
|
#elif isinstance(arg, int):
|
|
#self.data[arg] = val
|
|
#elif isinstance(arg, tuple):
|
|
#arg = self._orderArgs(arg)
|
|
#self.data[arg[0]][arg[1]] = val
|
|
#else:
|
|
#raise TypeError(type(arg))
|
|
|
|
#def __setitem__dict(self, arg, val):
|
|
#if isinstance(arg, basestring):
|
|
#if len(val) != len(self.data[arg]):
|
|
#raise Exception("Values (%d) and data set (%d) are not the same length." % (len(val), len(self.data[arg])))
|
|
#self.data[arg] = val
|
|
#elif isinstance(arg, int):
|
|
#for k in self.data:
|
|
#self.data[k][arg] = val[k]
|
|
#elif isinstance(arg, tuple):
|
|
#arg = self._orderArgs(arg)
|
|
#self.data[arg[1]][arg[0]] = val
|
|
#else:
|
|
#raise TypeError(type(arg))
|
|
|
|
#def _orderArgs(self, args):
|
|
### return args in (int, str) order
|
|
#if isinstance(args[0], basestring):
|
|
#return (args[1], args[0])
|
|
#else:
|
|
#return args
|
|
|
|
#def __iter__(self):
|
|
#for i in xrange(len(self)):
|
|
#yield self[i]
|
|
|
|
#def __len__(self):
|
|
#if self.mode == 'array' or self.mode == 'list':
|
|
#return len(self.data)
|
|
#else:
|
|
#return max(map(len, self.data.values()))
|
|
|
|
#def columnNames(self):
|
|
#"""returns column names in no particular order"""
|
|
#if self.mode == 'array':
|
|
#return self.data.dtype.names
|
|
#elif self.mode == 'list':
|
|
#names = set()
|
|
#for row in self.data:
|
|
#names.update(row.keys())
|
|
#return list(names)
|
|
#elif self.mode == 'dict':
|
|
#return self.data.keys()
|
|
|
|
#def keys(self):
|
|
#return self.columnNames()
|