pyqtgraph/pyqtgraph/widgets/ScatterPlotWidget.py
Luke Campagnola 8e1c3856ea Added more examples to menu
Minor edits
2015-03-01 16:52:15 -05:00

219 lines
8.2 KiB
Python

from ..Qt import QtGui, QtCore
from .PlotWidget import PlotWidget
from .DataFilterWidget import DataFilterParameter
from .ColorMapWidget import ColorMapParameter
from .. import parametertree as ptree
from .. import functions as fn
from .. import getConfigOption
from ..graphicsItems.TextItem import TextItem
import numpy as np
from ..pgcollections import OrderedDict
__all__ = ['ScatterPlotWidget']
class ScatterPlotWidget(QtGui.QSplitter):
"""
This is a high-level widget for exploring relationships in tabular data.
Given a multi-column record array, the widget displays a scatter plot of a
specific subset of the data. Includes controls for selecting the columns to
plot, filtering data, and determining symbol color and shape.
The widget consists of four components:
1) A list of column names from which the user may select 1 or 2 columns
to plot. If one column is selected, the data for that column will be
plotted in a histogram-like manner by using :func:`pseudoScatter()
<pyqtgraph.pseudoScatter>`. If two columns are selected, then the
scatter plot will be generated with x determined by the first column
that was selected and y by the second.
2) A DataFilter that allows the user to select a subset of the data by
specifying multiple selection criteria.
3) A ColorMap that allows the user to determine how points are colored by
specifying multiple criteria.
4) A PlotWidget for displaying the data.
"""
def __init__(self, parent=None):
QtGui.QSplitter.__init__(self, QtCore.Qt.Horizontal)
self.ctrlPanel = QtGui.QSplitter(QtCore.Qt.Vertical)
self.addWidget(self.ctrlPanel)
self.fieldList = QtGui.QListWidget()
self.fieldList.setSelectionMode(self.fieldList.ExtendedSelection)
self.ptree = ptree.ParameterTree(showHeader=False)
self.filter = DataFilterParameter()
self.colorMap = ColorMapParameter()
self.params = ptree.Parameter.create(name='params', type='group', children=[self.filter, self.colorMap])
self.ptree.setParameters(self.params, showTop=False)
self.plot = PlotWidget()
self.ctrlPanel.addWidget(self.fieldList)
self.ctrlPanel.addWidget(self.ptree)
self.addWidget(self.plot)
bg = fn.mkColor(getConfigOption('background'))
bg.setAlpha(150)
self.filterText = TextItem(border=getConfigOption('foreground'), color=bg)
self.filterText.setPos(60,20)
self.filterText.setParentItem(self.plot.plotItem)
self.data = None
self.mouseOverField = None
self.scatterPlot = None
self.style = dict(pen=None, symbol='o')
self.fieldList.itemSelectionChanged.connect(self.fieldSelectionChanged)
self.filter.sigFilterChanged.connect(self.filterChanged)
self.colorMap.sigColorMapChanged.connect(self.updatePlot)
def setFields(self, fields, mouseOverField=None):
"""
Set the list of field names/units to be processed.
The format of *fields* is the same as used by
:func:`ColorMapWidget.setFields <pyqtgraph.widgets.ColorMapWidget.ColorMapParameter.setFields>`
"""
self.fields = OrderedDict(fields)
self.mouseOverField = mouseOverField
self.fieldList.clear()
for f,opts in fields:
item = QtGui.QListWidgetItem(f)
item.opts = opts
item = self.fieldList.addItem(item)
self.filter.setFields(fields)
self.colorMap.setFields(fields)
def setData(self, data):
"""
Set the data to be processed and displayed.
Argument must be a numpy record array.
"""
self.data = data
self.filtered = None
self.updatePlot()
def fieldSelectionChanged(self):
sel = self.fieldList.selectedItems()
if len(sel) > 2:
self.fieldList.blockSignals(True)
try:
for item in sel[1:-1]:
item.setSelected(False)
finally:
self.fieldList.blockSignals(False)
self.updatePlot()
def filterChanged(self, f):
self.filtered = None
self.updatePlot()
desc = self.filter.describe()
if len(desc) == 0:
self.filterText.setVisible(False)
else:
self.filterText.setText('\n'.join(desc))
self.filterText.setVisible(True)
def updatePlot(self):
self.plot.clear()
if self.data is None:
return
if self.filtered is None:
self.filtered = self.filter.filterData(self.data)
data = self.filtered
if len(data) == 0:
return
colors = np.array([fn.mkBrush(*x) for x in self.colorMap.map(data)])
style = self.style.copy()
## Look up selected columns and units
sel = list([str(item.text()) for item in self.fieldList.selectedItems()])
units = list([item.opts.get('units', '') for item in self.fieldList.selectedItems()])
if len(sel) == 0:
self.plot.setTitle('')
return
if len(sel) == 1:
self.plot.setLabels(left=('N', ''), bottom=(sel[0], units[0]), title='')
if len(data) == 0:
return
#x = data[sel[0]]
#y = None
xy = [data[sel[0]], None]
elif len(sel) == 2:
self.plot.setLabels(left=(sel[1],units[1]), bottom=(sel[0],units[0]))
if len(data) == 0:
return
xy = [data[sel[0]], data[sel[1]]]
#xydata = []
#for ax in [0,1]:
#d = data[sel[ax]]
### scatter catecorical values just a bit so they show up better in the scatter plot.
##if sel[ax] in ['MorphologyBSMean', 'MorphologyTDMean', 'FIType']:
##d += np.random.normal(size=len(cells), scale=0.1)
#xydata.append(d)
#x,y = xydata
## convert enum-type fields to float, set axis labels
enum = [False, False]
for i in [0,1]:
axis = self.plot.getAxis(['bottom', 'left'][i])
if xy[i] is not None and (self.fields[sel[i]].get('mode', None) == 'enum' or xy[i].dtype.kind in ('S', 'O')):
vals = self.fields[sel[i]].get('values', list(set(xy[i])))
xy[i] = np.array([vals.index(x) if x in vals else len(vals) for x in xy[i]], dtype=float)
axis.setTicks([list(enumerate(vals))])
enum[i] = True
else:
axis.setTicks(None) # reset to automatic ticking
## mask out any nan values
mask = np.ones(len(xy[0]), dtype=bool)
if xy[0].dtype.kind == 'f':
mask &= ~np.isnan(xy[0])
if xy[1] is not None and xy[1].dtype.kind == 'f':
mask &= ~np.isnan(xy[1])
xy[0] = xy[0][mask]
style['symbolBrush'] = colors[mask]
## Scatter y-values for a histogram-like appearance
if xy[1] is None:
## column scatter plot
xy[1] = fn.pseudoScatter(xy[0])
else:
## beeswarm plots
xy[1] = xy[1][mask]
for ax in [0,1]:
if not enum[ax]:
continue
imax = int(xy[ax].max()) if len(xy[ax]) > 0 else 0
for i in range(imax+1):
keymask = xy[ax] == i
scatter = fn.pseudoScatter(xy[1-ax][keymask], bidir=True)
if len(scatter) == 0:
continue
smax = np.abs(scatter).max()
if smax != 0:
scatter *= 0.2 / smax
xy[ax][keymask] += scatter
if self.scatterPlot is not None:
try:
self.scatterPlot.sigPointsClicked.disconnect(self.plotClicked)
except:
pass
self.scatterPlot = self.plot.plot(xy[0], xy[1], data=data[mask], **style)
self.scatterPlot.sigPointsClicked.connect(self.plotClicked)
def plotClicked(self, plot, points):
pass