pyqtgraph/pyqtgraph/opengl/MeshData.py

507 lines
22 KiB
Python

# -*- coding: utf-8 -*-
import numpy as np
from ..Qt import QtGui
from ..python2_3 import xrange
class MeshData(object):
"""
Class for storing and operating on 3D mesh data. May contain:
- list of vertex locations
- list of edges
- list of triangles
- colors per vertex, edge, or tri
- normals per vertex or tri
This class handles conversion between the standard [list of vertexes, list of faces]
format (suitable for use with glDrawElements) and 'indexed' [list of vertexes] format
(suitable for use with glDrawArrays). It will automatically compute face normal
vectors as well as averaged vertex normal vectors.
The class attempts to be as efficient as possible in caching conversion results and
avoiding unnecessary conversions.
"""
def __init__(self, vertexes=None, faces=None, edges=None, vertexColors=None, faceColors=None):
"""
============== =====================================================
**Arguments:**
vertexes (Nv, 3) array of vertex coordinates.
If faces is not specified, then this will instead be
interpreted as (Nf, 3, 3) array of coordinates.
faces (Nf, 3) array of indexes into the vertex array.
edges [not available yet]
vertexColors (Nv, 4) array of vertex colors.
If faces is not specified, then this will instead be
interpreted as (Nf, 3, 4) array of colors.
faceColors (Nf, 4) array of face colors.
============== =====================================================
All arguments are optional.
"""
self._vertexes = None # (Nv,3) array of vertex coordinates
self._vertexesIndexedByFaces = None # (Nf, 3, 3) array of vertex coordinates
self._vertexesIndexedByEdges = None # (Ne, 2, 3) array of vertex coordinates
## mappings between vertexes, faces, and edges
self._faces = None # Nx3 array of indexes into self._vertexes specifying three vertexes for each face
self._edges = None # Nx2 array of indexes into self._vertexes specifying two vertexes per edge
self._vertexFaces = None ## maps vertex ID to a list of face IDs (inverse mapping of _faces)
self._vertexEdges = None ## maps vertex ID to a list of edge IDs (inverse mapping of _edges)
## Per-vertex data
self._vertexNormals = None # (Nv, 3) array of normals, one per vertex
self._vertexNormalsIndexedByFaces = None # (Nf, 3, 3) array of normals
self._vertexColors = None # (Nv, 3) array of colors
self._vertexColorsIndexedByFaces = None # (Nf, 3, 4) array of colors
self._vertexColorsIndexedByEdges = None # (Nf, 2, 4) array of colors
## Per-face data
self._faceNormals = None # (Nf, 3) array of face normals
self._faceNormalsIndexedByFaces = None # (Nf, 3, 3) array of face normals
self._faceColors = None # (Nf, 4) array of face colors
self._faceColorsIndexedByFaces = None # (Nf, 3, 4) array of face colors
self._faceColorsIndexedByEdges = None # (Ne, 2, 4) array of face colors
## Per-edge data
self._edgeColors = None # (Ne, 4) array of edge colors
self._edgeColorsIndexedByEdges = None # (Ne, 2, 4) array of edge colors
#self._meshColor = (1, 1, 1, 0.1) # default color to use if no face/edge/vertex colors are given
if vertexes is not None:
if faces is None:
self.setVertexes(vertexes, indexed='faces')
if vertexColors is not None:
self.setVertexColors(vertexColors, indexed='faces')
if faceColors is not None:
self.setFaceColors(faceColors, indexed='faces')
else:
self.setVertexes(vertexes)
self.setFaces(faces)
if vertexColors is not None:
self.setVertexColors(vertexColors)
if faceColors is not None:
self.setFaceColors(faceColors)
def faces(self):
"""Return an array (Nf, 3) of vertex indexes, three per triangular face in the mesh.
If faces have not been computed for this mesh, the function returns None.
"""
return self._faces
def edges(self):
"""Return an array (Nf, 3) of vertex indexes, two per edge in the mesh."""
if self._edges is None:
self._computeEdges()
return self._edges
def setFaces(self, faces):
"""Set the (Nf, 3) array of faces. Each rown in the array contains
three indexes into the vertex array, specifying the three corners
of a triangular face."""
self._faces = faces
self._edges = None
self._vertexFaces = None
self._vertexesIndexedByFaces = None
self.resetNormals()
self._vertexColorsIndexedByFaces = None
self._faceColorsIndexedByFaces = None
def vertexes(self, indexed=None):
"""Return an array (N,3) of the positions of vertexes in the mesh.
By default, each unique vertex appears only once in the array.
If indexed is 'faces', then the array will instead contain three vertexes
per face in the mesh (and a single vertex may appear more than once in the array)."""
if indexed is None:
if self._vertexes is None and self._vertexesIndexedByFaces is not None:
self._computeUnindexedVertexes()
return self._vertexes
elif indexed == 'faces':
if self._vertexesIndexedByFaces is None and self._vertexes is not None:
self._vertexesIndexedByFaces = self._vertexes[self.faces()]
return self._vertexesIndexedByFaces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
def setVertexes(self, verts=None, indexed=None, resetNormals=True):
"""
Set the array (Nv, 3) of vertex coordinates.
If indexed=='faces', then the data must have shape (Nf, 3, 3) and is
assumed to be already indexed as a list of faces.
This will cause any pre-existing normal vectors to be cleared
unless resetNormals=False.
"""
if indexed is None:
if verts is not None:
self._vertexes = verts
self._vertexesIndexedByFaces = None
elif indexed=='faces':
self._vertexes = None
if verts is not None:
self._vertexesIndexedByFaces = verts
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
if resetNormals:
self.resetNormals()
def resetNormals(self):
self._vertexNormals = None
self._vertexNormalsIndexedByFaces = None
self._faceNormals = None
self._faceNormalsIndexedByFaces = None
def hasFaceIndexedData(self):
"""Return True if this object already has vertex positions indexed by face"""
return self._vertexesIndexedByFaces is not None
def hasEdgeIndexedData(self):
return self._vertexesIndexedByEdges is not None
def hasVertexColor(self):
"""Return True if this data set has vertex color information"""
for v in (self._vertexColors, self._vertexColorsIndexedByFaces, self._vertexColorsIndexedByEdges):
if v is not None:
return True
return False
def hasFaceColor(self):
"""Return True if this data set has face color information"""
for v in (self._faceColors, self._faceColorsIndexedByFaces, self._faceColorsIndexedByEdges):
if v is not None:
return True
return False
def faceNormals(self, indexed=None):
"""
Return an array (Nf, 3) of normal vectors for each face.
If indexed='faces', then instead return an indexed array
(Nf, 3, 3) (this is just the same array with each vector
copied three times).
"""
if self._faceNormals is None:
v = self.vertexes(indexed='faces')
self._faceNormals = np.cross(v[:,1]-v[:,0], v[:,2]-v[:,0])
if indexed is None:
return self._faceNormals
elif indexed == 'faces':
if self._faceNormalsIndexedByFaces is None:
norms = np.empty((self._faceNormals.shape[0], 3, 3))
norms[:] = self._faceNormals[:,np.newaxis,:]
self._faceNormalsIndexedByFaces = norms
return self._faceNormalsIndexedByFaces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
def vertexNormals(self, indexed=None):
"""
Return an array of normal vectors.
By default, the array will be (N, 3) with one entry per unique vertex in the mesh.
If indexed is 'faces', then the array will contain three normal vectors per face
(and some vertexes may be repeated).
"""
if self._vertexNormals is None:
faceNorms = self.faceNormals()
vertFaces = self.vertexFaces()
self._vertexNormals = np.empty(self._vertexes.shape, dtype=float)
for vindex in xrange(self._vertexes.shape[0]):
faces = vertFaces[vindex]
if len(faces) == 0:
self._vertexNormals[vindex] = (0,0,0)
continue
norms = faceNorms[faces] ## get all face normals
norm = norms.sum(axis=0) ## sum normals
norm /= (norm**2).sum()**0.5 ## and re-normalize
self._vertexNormals[vindex] = norm
if indexed is None:
return self._vertexNormals
elif indexed == 'faces':
return self._vertexNormals[self.faces()]
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
def vertexColors(self, indexed=None):
"""
Return an array (Nv, 4) of vertex colors.
If indexed=='faces', then instead return an indexed array
(Nf, 3, 4).
"""
if indexed is None:
return self._vertexColors
elif indexed == 'faces':
if self._vertexColorsIndexedByFaces is None:
self._vertexColorsIndexedByFaces = self._vertexColors[self.faces()]
return self._vertexColorsIndexedByFaces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
def setVertexColors(self, colors, indexed=None):
"""
Set the vertex color array (Nv, 4).
If indexed=='faces', then the array will be interpreted
as indexed and should have shape (Nf, 3, 4)
"""
if indexed is None:
self._vertexColors = colors
self._vertexColorsIndexedByFaces = None
elif indexed == 'faces':
self._vertexColors = None
self._vertexColorsIndexedByFaces = colors
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
def faceColors(self, indexed=None):
"""
Return an array (Nf, 4) of face colors.
If indexed=='faces', then instead return an indexed array
(Nf, 3, 4) (note this is just the same array with each color
repeated three times).
"""
if indexed is None:
return self._faceColors
elif indexed == 'faces':
if self._faceColorsIndexedByFaces is None and self._faceColors is not None:
Nf = self._faceColors.shape[0]
self._faceColorsIndexedByFaces = np.empty((Nf, 3, 4), dtype=self._faceColors.dtype)
self._faceColorsIndexedByFaces[:] = self._faceColors.reshape(Nf, 1, 4)
return self._faceColorsIndexedByFaces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
def setFaceColors(self, colors, indexed=None):
"""
Set the face color array (Nf, 4).
If indexed=='faces', then the array will be interpreted
as indexed and should have shape (Nf, 3, 4)
"""
if indexed is None:
self._faceColors = colors
self._faceColorsIndexedByFaces = None
elif indexed == 'faces':
self._faceColors = None
self._faceColorsIndexedByFaces = colors
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
def faceCount(self):
"""
Return the number of faces in the mesh.
"""
if self._faces is not None:
return self._faces.shape[0]
elif self._vertexesIndexedByFaces is not None:
return self._vertexesIndexedByFaces.shape[0]
def edgeColors(self):
return self._edgeColors
#def _setIndexedFaces(self, faces, vertexColors=None, faceColors=None):
#self._vertexesIndexedByFaces = faces
#self._vertexColorsIndexedByFaces = vertexColors
#self._faceColorsIndexedByFaces = faceColors
def _computeUnindexedVertexes(self):
## Given (Nv, 3, 3) array of vertexes-indexed-by-face, convert backward to unindexed vertexes
## This is done by collapsing into a list of 'unique' vertexes (difference < 1e-14)
## I think generally this should be discouraged..
faces = self._vertexesIndexedByFaces
verts = {} ## used to remember the index of each vertex position
self._faces = np.empty(faces.shape[:2], dtype=np.uint)
self._vertexes = []
self._vertexFaces = []
self._faceNormals = None
self._vertexNormals = None
for i in xrange(faces.shape[0]):
face = faces[i]
inds = []
for j in range(face.shape[0]):
pt = face[j]
pt2 = tuple([round(x*1e14) for x in pt]) ## quantize to be sure that nearly-identical points will be merged
index = verts.get(pt2, None)
if index is None:
#self._vertexes.append(QtGui.QVector3D(*pt))
self._vertexes.append(pt)
self._vertexFaces.append([])
index = len(self._vertexes)-1
verts[pt2] = index
self._vertexFaces[index].append(i) # keep track of which vertexes belong to which faces
self._faces[i,j] = index
self._vertexes = np.array(self._vertexes, dtype=float)
#def _setUnindexedFaces(self, faces, vertexes, vertexColors=None, faceColors=None):
#self._vertexes = vertexes #[QtGui.QVector3D(*v) for v in vertexes]
#self._faces = faces.astype(np.uint)
#self._edges = None
#self._vertexFaces = None
#self._faceNormals = None
#self._vertexNormals = None
#self._vertexColors = vertexColors
#self._faceColors = faceColors
def vertexFaces(self):
"""
Return list mapping each vertex index to a list of face indexes that use the vertex.
"""
if self._vertexFaces is None:
self._vertexFaces = [[] for i in xrange(len(self.vertexes()))]
for i in xrange(self._faces.shape[0]):
face = self._faces[i]
for ind in face:
self._vertexFaces[ind].append(i)
return self._vertexFaces
#def reverseNormals(self):
#"""
#Reverses the direction of all normal vectors.
#"""
#pass
#def generateEdgesFromFaces(self):
#"""
#Generate a set of edges by listing all the edges of faces and removing any duplicates.
#Useful for displaying wireframe meshes.
#"""
#pass
def _computeEdges(self):
if not self.hasFaceIndexedData():
## generate self._edges from self._faces
nf = len(self._faces)
edges = np.empty(nf*3, dtype=[('i', np.uint, 2)])
edges['i'][0:nf] = self._faces[:,:2]
edges['i'][nf:2*nf] = self._faces[:,1:3]
edges['i'][-nf:,0] = self._faces[:,2]
edges['i'][-nf:,1] = self._faces[:,0]
# sort per-edge
mask = edges['i'][:,0] > edges['i'][:,1]
edges['i'][mask] = edges['i'][mask][:,::-1]
# remove duplicate entries
self._edges = np.unique(edges)['i']
#print self._edges
elif self._vertexesIndexedByFaces is not None:
verts = self._vertexesIndexedByFaces
edges = np.empty((verts.shape[0], 3, 2), dtype=np.uint)
nf = verts.shape[0]
edges[:,0,0] = np.arange(nf) * 3
edges[:,0,1] = edges[:,0,0] + 1
edges[:,1,0] = edges[:,0,1]
edges[:,1,1] = edges[:,1,0] + 1
edges[:,2,0] = edges[:,1,1]
edges[:,2,1] = edges[:,0,0]
self._edges = edges
else:
raise Exception("MeshData cannot generate edges--no faces in this data.")
def save(self):
"""Serialize this mesh to a string appropriate for disk storage"""
import pickle
if self._faces is not None:
names = ['_vertexes', '_faces']
else:
names = ['_vertexesIndexedByFaces']
if self._vertexColors is not None:
names.append('_vertexColors')
elif self._vertexColorsIndexedByFaces is not None:
names.append('_vertexColorsIndexedByFaces')
if self._faceColors is not None:
names.append('_faceColors')
elif self._faceColorsIndexedByFaces is not None:
names.append('_faceColorsIndexedByFaces')
state = dict([(n,getattr(self, n)) for n in names])
return pickle.dumps(state)
def restore(self, state):
"""Restore the state of a mesh previously saved using save()"""
import pickle
state = pickle.loads(state)
for k in state:
if isinstance(state[k], list):
if isinstance(state[k][0], QtGui.QVector3D):
state[k] = [[v.x(), v.y(), v.z()] for v in state[k]]
state[k] = np.array(state[k])
setattr(self, k, state[k])
@staticmethod
def sphere(rows, cols, radius=1.0, offset=True):
"""
Return a MeshData instance with vertexes and faces computed
for a spherical surface.
"""
verts = np.empty((rows+1, cols, 3), dtype=float)
## compute vertexes
phi = (np.arange(rows+1) * np.pi / rows).reshape(rows+1, 1)
s = radius * np.sin(phi)
verts[...,2] = radius * np.cos(phi)
th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols))
if offset:
th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column
verts[...,0] = s * np.cos(th)
verts[...,1] = s * np.sin(th)
verts = verts.reshape((rows+1)*cols, 3)[cols-1:-(cols-1)] ## remove redundant vertexes from top and bottom
## compute faces
faces = np.empty((rows*cols*2, 3), dtype=np.uint)
rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
for row in range(rows):
start = row * cols * 2
faces[start:start+cols] = rowtemplate1 + row * cols
faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
faces = faces[cols:-cols] ## cut off zero-area triangles at top and bottom
## adjust for redundant vertexes that were removed from top and bottom
vmin = cols-1
faces[faces<vmin] = vmin
faces -= vmin
vmax = verts.shape[0]-1
faces[faces>vmax] = vmax
return MeshData(vertexes=verts, faces=faces)
@staticmethod
def cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False):
"""
Return a MeshData instance with vertexes and faces computed
for a cylindrical surface.
The cylinder may be tapered with different radii at each end (truncated cone)
"""
verts = np.empty((rows+1, cols, 3), dtype=float)
if isinstance(radius, int):
radius = [radius, radius] # convert to list
## compute vertexes
th = np.linspace(2 * np.pi, (2 * np.pi)/cols, cols).reshape(1, cols)
r = np.linspace(radius[0],radius[1],num=rows+1, endpoint=True).reshape(rows+1, 1) # radius as a function of z
verts[...,2] = np.linspace(0, length, num=rows+1, endpoint=True).reshape(rows+1, 1) # z
if offset:
th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column
verts[...,0] = r * np.cos(th) # x = r cos(th)
verts[...,1] = r * np.sin(th) # y = r sin(th)
verts = verts.reshape((rows+1)*cols, 3) # just reshape: no redundant vertices...
## compute faces
faces = np.empty((rows*cols*2, 3), dtype=np.uint)
rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
for row in range(rows):
start = row * cols * 2
faces[start:start+cols] = rowtemplate1 + row * cols
faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
return MeshData(vertexes=verts, faces=faces)