pyqtgraph/tests/test_functions.py
Nils Nemitz 7d41e8a878
Color map linearization (#1797)
* extended color map functions

* assertion string, documentation pass, comment purge

* fix some documentation links

* simplify assert statement

* removed comments and redundancy, renamed modulated bar

* include modulatedBarData in documentation

* test running matplotlib with dummy backend

* skip color maps example on OSX/PySide6.1.1

* removed skipping of tests

* reverted some accidental whitespace, removed unneeded numpy import

* removed unneded alpha parameter
2021-06-08 20:41:46 -07:00

336 lines
11 KiB
Python

# -*- coding: utf-8 -*-
from collections import OrderedDict
from copy import deepcopy
from contextlib import suppress
from pyqtgraph.functions import arrayToQPath, eq
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal
import pyqtgraph as pg
np.random.seed(12345)
def testSolve3D():
p1 = np.array([[0,0,0,1],
[1,0,0,1],
[0,1,0,1],
[0,0,1,1]], dtype=float)
# transform points through random matrix
tr = np.random.normal(size=(4, 4))
tr[3] = (0,0,0,1)
p2 = np.dot(tr, p1.T).T[:,:3]
# solve to see if we can recover the transformation matrix.
tr2 = pg.solve3DTransform(p1, p2)
assert_array_almost_equal(tr[:3], tr2[:3])
def test_interpolateArray_order0():
check_interpolateArray(order=0)
def test_interpolateArray_order1():
check_interpolateArray(order=1)
def check_interpolateArray(order):
def interpolateArray(data, x):
result = pg.interpolateArray(data, x, order=order)
assert result.shape == x.shape[:-1] + data.shape[x.shape[-1]:]
return result
data = np.array([[ 1., 2., 4. ],
[ 10., 20., 40. ],
[ 100., 200., 400.]])
# test various x shapes
interpolateArray(data, np.ones((1,)))
interpolateArray(data, np.ones((2,)))
interpolateArray(data, np.ones((1, 1)))
interpolateArray(data, np.ones((1, 2)))
interpolateArray(data, np.ones((5, 1)))
interpolateArray(data, np.ones((5, 2)))
interpolateArray(data, np.ones((5, 5, 1)))
interpolateArray(data, np.ones((5, 5, 2)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((3,)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((1, 3,)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((5, 5, 3,)))
x = np.array([[ 0.3, 0.6],
[ 1. , 1. ],
[ 0.501, 1. ], # NOTE: testing at exactly 0.5 can yield different results from map_coordinates
[ 0.501, 2.501], # due to differences in rounding
[ 10. , 10. ]])
result = interpolateArray(data, x)
# make sure results match ndimage.map_coordinates
import scipy.ndimage
spresult = scipy.ndimage.map_coordinates(data, x.T, order=order)
#spresult = np.array([ 5.92, 20. , 11. , 0. , 0. ]) # generated with the above line
assert_array_almost_equal(result, spresult)
# test mapping when x.shape[-1] < data.ndim
x = np.array([[ 0.3, 0],
[ 0.3, 1],
[ 0.3, 2]])
r1 = interpolateArray(data, x)
x = np.array([0.3]) # should broadcast across axis 1
r2 = interpolateArray(data, x)
assert_array_almost_equal(r1, r2)
# test mapping 2D array of locations
x = np.array([[[0.501, 0.501], [0.501, 1.0], [0.501, 1.501]],
[[1.501, 0.501], [1.501, 1.0], [1.501, 1.501]]])
r1 = interpolateArray(data, x)
r2 = scipy.ndimage.map_coordinates(data, x.transpose(2,0,1), order=order)
#r2 = np.array([[ 8.25, 11. , 16.5 ], # generated with the above line
#[ 82.5 , 110. , 165. ]])
assert_array_almost_equal(r1, r2)
def test_subArray():
a = np.array([0, 0, 111, 112, 113, 0, 121, 122, 123, 0, 0, 0, 211, 212, 213, 0, 221, 222, 223, 0, 0, 0, 0])
b = pg.subArray(a, offset=2, shape=(2,2,3), stride=(10,4,1))
c = np.array([[[111,112,113], [121,122,123]], [[211,212,213], [221,222,223]]])
assert np.all(b == c)
# operate over first axis; broadcast over the rest
aa = np.vstack([a, a/100.]).T
cc = np.empty(c.shape + (2,))
cc[..., 0] = c
cc[..., 1] = c / 100.
bb = pg.subArray(aa, offset=2, shape=(2,2,3), stride=(10,4,1))
assert np.all(bb == cc)
def test_rescaleData():
dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
for dtype1 in dtypes:
for dtype2 in dtypes:
data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
if dtype2.kind in 'iu':
lim = np.iinfo(dtype2)
lim = lim.min, lim.max
else:
lim = (-np.inf, np.inf)
s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
s2 = pg.rescaleData(data, scale, offset, dtype2)
assert s1.dtype == s2.dtype
if dtype2.kind in 'iu':
assert np.all(s1 == s2)
else:
assert np.allclose(s1, s2)
def test_eq():
eq = pg.functions.eq
zeros = [0, 0.0, np.float64(0), np.float32(0), np.int32(0), np.int64(0)]
for i,x in enumerate(zeros):
for y in zeros[i:]:
assert eq(x, y)
assert eq(y, x)
assert eq(np.nan, np.nan)
# test
class NotEq(object):
def __eq__(self, x):
return False
noteq = NotEq()
assert eq(noteq, noteq) # passes because they are the same object
assert not eq(noteq, NotEq())
# Should be able to test for equivalence even if the test raises certain
# exceptions
class NoEq(object):
def __init__(self, err):
self.err = err
def __eq__(self, x):
raise self.err
noeq1 = NoEq(AttributeError())
noeq2 = NoEq(ValueError())
noeq3 = NoEq(Exception())
assert eq(noeq1, noeq1)
assert not eq(noeq1, noeq2)
assert not eq(noeq2, noeq1)
with pytest.raises(Exception):
eq(noeq3, noeq2)
# test array equivalence
# note that numpy has a weird behavior here--np.all() always returns True
# if one of the arrays has size=0; eq() will only return True if both arrays
# have the same shape.
a1 = np.zeros((10, 20)).astype('float')
a2 = a1 + 1
a3 = a2.astype('int')
a4 = np.empty((0, 20))
assert not eq(a1, a2) # same shape/dtype, different values
assert not eq(a1, a3) # same shape, different dtype and values
assert not eq(a1, a4) # different shape (note: np.all gives True if one array has size 0)
assert not eq(a2, a3) # same values, but different dtype
assert not eq(a2, a4) # different shape
assert not eq(a3, a4) # different shape and dtype
assert eq(a4, a4.copy())
assert not eq(a4, a4.T)
# test containers
assert not eq({'a': 1}, {'a': 1, 'b': 2})
assert not eq({'a': 1}, {'a': 2})
d1 = {'x': 1, 'y': np.nan, 3: ['a', np.nan, a3, 7, 2.3], 4: a4}
d2 = deepcopy(d1)
assert eq(d1, d2)
d1_ordered = OrderedDict(d1)
d2_ordered = deepcopy(d1_ordered)
assert eq(d1_ordered, d2_ordered)
assert not eq(d1_ordered, d2)
items = list(d1.items())
assert not eq(OrderedDict(items), OrderedDict(reversed(items)))
assert not eq([1,2,3], [1,2,3,4])
l1 = [d1, np.inf, -np.inf, np.nan]
l2 = deepcopy(l1)
t1 = tuple(l1)
t2 = tuple(l2)
assert eq(l1, l2)
assert eq(t1, t2)
assert eq(set(range(10)), set(range(10)))
assert not eq(set(range(10)), set(range(9)))
@pytest.mark.parametrize("s,suffix,expected", [
# usual cases
("100 uV", "V", ("100", "u", "V")),
("100 µV", "V", ("100", "µ", "V")),
("4.2 nV", None, ("4.2", "n", "V")),
("1.2 m", "m", ("1.2", "", "m")),
("1.2 m", None, ("1.2", "", "m")),
("5.0e9", None, ("5.0e9", "", "")),
("2 units", "units", ("2", "", "units")),
# siPrefix with explicit empty suffix
("1.2 m", "", ("1.2", "m", "")),
("5.0e-9 M", "", ("5.0e-9", "M", "")),
# weirder cases that should return the reasonable thing
("4.2 nV", "nV", ("4.2", "", "nV")),
("4.2 nV", "", ("4.2", "n", "")),
("1.2 j", "", ("1.2", "", "")),
("1.2 j", None, ("1.2", "", "j")),
# expected error cases
("100 uV", "v", ValueError),
])
def test_siParse(s, suffix, expected):
if isinstance(expected, tuple):
assert pg.siParse(s, suffix=suffix) == expected
else:
with pytest.raises(expected):
pg.siParse(s, suffix=suffix)
def test_CIELab_reconversion():
color_list = [ pg.Qt.QtGui.QColor('#100235') ] # known problematic values
for _ in range(20):
qcol = pg.Qt.QtGui.QColor()
qcol.setRgbF( *np.random.random((3)) )
color_list.append(qcol)
for qcol1 in color_list:
vec_Lab = pg.functions.colorCIELab( qcol1 )
qcol2 = pg.functions.CIELabColor(*vec_Lab)
for val1, val2 in zip( qcol1.getRgb(), qcol2.getRgb() ):
assert abs(val1-val2)<=1, f'Excess CIELab reconversion error ({qcol1.name() } > {vec_Lab } > {qcol2.name()})'
MoveToElement = pg.QtGui.QPainterPath.ElementType.MoveToElement
LineToElement = pg.QtGui.QPainterPath.ElementType.LineToElement
@pytest.mark.parametrize(
"xs, ys, connect, expected", [
(
np.arange(6), np.arange(0, -6, step=-1), 'all', (
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(LineToElement, 2.0, -2.0),
(LineToElement, 3.0, -3.0),
(LineToElement, 4.0, -4.0),
(LineToElement, 5.0, -5.0),
)
),
(
np.arange(6), np.arange(0, -6, step=-1), 'pairs', (
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(MoveToElement, 2.0, -2.0),
(LineToElement, 3.0, -3.0),
(MoveToElement, 4.0, -4.0),
(LineToElement, 5.0, -5.0),
)
),
(
np.arange(5), np.arange(0, -5, step=-1), 'pairs', (
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(MoveToElement, 2.0, -2.0),
(LineToElement, 3.0, -3.0),
(MoveToElement, 4.0, -4.0)
)
),
(
np.arange(5), np.array([0, -1, np.NaN, -3, -4]), 'finite', (
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(LineToElement, 1.0, -1.0),
(MoveToElement, 3.0, -3.0),
(LineToElement, 4.0, -4.0)
)
),
(
np.array([0, 1, np.NaN, 3, 4]), np.arange(0, -5, step=-1), 'finite', (
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(LineToElement, 1.0, -1.0),
(MoveToElement, 3.0, -3.0),
(LineToElement, 4.0, -4.0)
)
),
(
np.arange(5), np.arange(0, -5, step=-1), np.array([0, 1, 0, 1, 0]), (
(MoveToElement, 0.0, 0.0),
(MoveToElement, 1.0, -1.0),
(LineToElement, 2.0, -2.0),
(MoveToElement, 3.0, -3.0),
(LineToElement, 4.0, -4.0)
)
)
]
)
def test_arrayToQPath(xs, ys, connect, expected):
path = arrayToQPath(xs, ys, connect=connect)
for i in range(path.elementCount()):
with suppress(NameError):
# nan elements add two line-segments, for simplicity of test config
# we can ignore the second segment
if (eq(element.x, np.nan) or eq(element.y, np.nan)):
continue
element = path.elementAt(i)
assert eq(expected[i], (element.type, element.x, element.y))