pyqtgraph/pyqtgraph/graphicsItems/PlotDataItem.py

1142 lines
48 KiB
Python

# -*- coding: utf-8 -*-
import warnings
import math
import numpy as np
from .. import metaarray as metaarray
from ..Qt import QtCore
from .GraphicsObject import GraphicsObject
from .PlotCurveItem import PlotCurveItem
from .ScatterPlotItem import ScatterPlotItem
from .. import functions as fn
from .. import debug as debug
from .. import getConfigOption
__all__ = ['PlotDataItem']
class PlotDataItem(GraphicsObject):
"""
**Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>`
GraphicsItem for displaying plot curves, scatter plots, or both.
While it is possible to use :class:`PlotCurveItem <pyqtgraph.PlotCurveItem>` or
:class:`ScatterPlotItem <pyqtgraph.ScatterPlotItem>` individually, this class
provides a unified interface to both. Instances of :class:`PlotDataItem` are
usually created by plot() methods such as :func:`pyqtgraph.plot` and
:func:`PlotItem.plot() <pyqtgraph.PlotItem.plot>`.
================================== ==============================================
**Signals:**
sigPlotChanged(self) Emitted when the data in this item is updated.
sigClicked(self, ev) Emitted when the item is clicked.
sigPointsClicked(self, points, ev) Emitted when a plot point is clicked
Sends the list of points under the mouse.
sigPointsHovered(self, points, ev) Emitted when a plot point is hovered over.
Sends the list of points under the mouse.
================================== ==============================================
"""
sigPlotChanged = QtCore.Signal(object)
sigClicked = QtCore.Signal(object, object)
sigPointsClicked = QtCore.Signal(object, object, object)
sigPointsHovered = QtCore.Signal(object, object, object)
def __init__(self, *args, **kargs):
"""
There are many different ways to create a PlotDataItem:
**Data initialization arguments:** (x,y data only)
=================================== ======================================
PlotDataItem(xValues, yValues) x and y values may be any sequence
(including ndarray) of real numbers
PlotDataItem(yValues) y values only -- x will be
automatically set to range(len(y))
PlotDataItem(x=xValues, y=yValues) x and y given by keyword arguments
PlotDataItem(ndarray(Nx2)) numpy array with shape (N, 2) where
``x=data[:,0]`` and ``y=data[:,1]``
=================================== ======================================
**Data initialization arguments:** (x,y data AND may include spot style)
============================ =========================================
PlotDataItem(recarray) numpy array with ``dtype=[('x', float),
('y', float), ...]``
PlotDataItem(list-of-dicts) ``[{'x': x, 'y': y, ...}, ...]``
PlotDataItem(dict-of-lists) ``{'x': [...], 'y': [...], ...}``
PlotDataItem(MetaArray) 1D array of Y values with X sepecified as
axis values OR 2D array with a column 'y'
and extra columns as needed.
============================ =========================================
**Line style keyword arguments:**
============ ==============================================================================
connect Specifies how / whether vertexes should be connected. See
:func:`arrayToQPath() <pyqtgraph.arrayToQPath>`
pen Pen to use for drawing line between points.
Default is solid grey, 1px width. Use None to disable line drawing.
May be any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>`
shadowPen Pen for secondary line to draw behind the primary line. disabled by default.
May be any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>`
fillLevel Fill the area between the curve and fillLevel
fillOutline (bool) If True, an outline surrounding the *fillLevel* area is drawn.
fillBrush Fill to use when fillLevel is specified.
May be any single argument accepted by :func:`mkBrush() <pyqtgraph.mkBrush>`
stepMode (str or None) If "center", a step is drawn using the x
values as boundaries and the given y values are
associated to the mid-points between the boundaries of
each step. This is commonly used when drawing
histograms. Note that in this case, len(x) == len(y) + 1
If "left" or "right", the step is drawn assuming that
the y value is associated to the left or right boundary,
respectively. In this case len(x) == len(y)
If not passed or an empty string or None is passed, the
step mode is not enabled.
Passing True is a deprecated equivalent to "center".
(added in version 0.9.9)
============ ==============================================================================
**Point style keyword arguments:** (see :func:`ScatterPlotItem.setData() <pyqtgraph.ScatterPlotItem.setData>` for more information)
============ =====================================================
symbol Symbol to use for drawing points OR list of symbols,
one per point. Default is no symbol.
Options are o, s, t, d, +, or any QPainterPath
symbolPen Outline pen for drawing points OR list of pens, one
per point. May be any single argument accepted by
:func:`mkPen() <pyqtgraph.mkPen>`
symbolBrush Brush for filling points OR list of brushes, one per
point. May be any single argument accepted by
:func:`mkBrush() <pyqtgraph.mkBrush>`
symbolSize Diameter of symbols OR list of diameters.
pxMode (bool) If True, then symbolSize is specified in
pixels. If False, then symbolSize is
specified in data coordinates.
============ =====================================================
**Optimization keyword arguments:**
================= =====================================================================
antialias (bool) By default, antialiasing is disabled to improve performance.
Note that in some cases (in particluar, when pxMode=True), points
will be rendered antialiased even if this is set to False.
decimate deprecated.
downsample (int) Reduce the number of samples displayed by this value
downsampleMethod 'subsample': Downsample by taking the first of N samples.
This method is fastest and least accurate.
'mean': Downsample by taking the mean of N samples.
'peak': Downsample by drawing a saw wave that follows the min
and max of the original data. This method produces the best
visual representation of the data but is slower.
autoDownsample (bool) If True, resample the data before plotting to avoid plotting
multiple line segments per pixel. This can improve performance when
viewing very high-density data, but increases the initial overhead
and memory usage.
clipToView (bool) If True, only plot data that is visible within the X range of
the containing ViewBox. This can improve performance when plotting
very large data sets where only a fraction of the data is visible
at any time.
dynamicRangeLimit (float or None) Limit off-screen positions of data points at large
magnification to avoids display errors. Disabled if None.
skipFiniteCheck (bool) Optimization parameter that can speed up plot time by
telling the painter to not check and compensate for NaN
values. If set to True, and NaN values exist, the data
may not be displayed or your plot will take a
significant performance hit. Defaults to False.
identical *deprecated*
================= =====================================================================
**Meta-info keyword arguments:**
========== ================================================
name name of dataset. This would appear in a legend
========== ================================================
"""
GraphicsObject.__init__(self)
self.setFlag(self.GraphicsItemFlag.ItemHasNoContents)
self.xData = None
self.yData = None
self.xDisp = None
self.yDisp = None
self.curve = PlotCurveItem()
self.scatter = ScatterPlotItem()
self.curve.setParentItem(self)
self.scatter.setParentItem(self)
self.curve.sigClicked.connect(self.curveClicked)
self.scatter.sigClicked.connect(self.scatterClicked)
self.scatter.sigHovered.connect(self.scatterHovered)
# self._xViewRangeWasChanged = False
# self._yViewRangeWasChanged = False
# self._styleWasChanged = True # force initial update
# update-required notifications are handled through properties to allow future management through
# the QDynamicPropertyChangeEvent sent on any change.
self.setProperty('xViewRangeWasChanged', False)
self.setProperty('yViewRangeWasChanged', False)
self.setProperty('styleWasChanged', True) # force initial update
self._dataRect = None
self._drlLastClip = (0.0, 0.0) # holds last clipping points of dynamic range limiter
#self.clear()
self.opts = {
'connect': 'all',
'fftMode': False,
'logMode': [False, False],
'derivativeMode': False,
'phasemapMode': False,
'alphaHint': 1.0,
'alphaMode': False,
'pen': (200,200,200),
'shadowPen': None,
'fillLevel': None,
'fillOutline': False,
'fillBrush': None,
'stepMode': None,
'symbol': None,
'symbolSize': 10,
'symbolPen': (200,200,200),
'symbolBrush': (50, 50, 150),
'pxMode': True,
'antialias': getConfigOption('antialias'),
'pointMode': None,
'downsample': 1,
'autoDownsample': False,
'downsampleMethod': 'peak',
'autoDownsampleFactor': 5., # draw ~5 samples per pixel
'clipToView': False,
'dynamicRangeLimit': 1e6,
'dynamicRangeHyst': 3.0,
'skipFiniteCheck': False,
'data': None,
}
self.setCurveClickable(kargs.get('clickable', False))
self.setData(*args, **kargs)
def implements(self, interface=None):
ints = ['plotData']
if interface is None:
return ints
return interface in ints
def name(self):
return self.opts.get('name', None)
def setCurveClickable(self, s, width=None):
self.curve.setClickable(s, width)
def curveClickable(self):
return self.curve.clickable
def boundingRect(self):
return QtCore.QRectF() ## let child items handle this
def setPos(self, x, y):
GraphicsObject.setPos(self, x, y)
# to update viewRect:
self.viewTransformChanged()
# to update displayed point sets, e.g. when clipping (which uses viewRect):
self.viewRangeChanged()
def setAlpha(self, alpha, auto):
if self.opts['alphaHint'] == alpha and self.opts['alphaMode'] == auto:
return
self.opts['alphaHint'] = alpha
self.opts['alphaMode'] = auto
self.setOpacity(alpha)
#self.update()
def setFftMode(self, mode):
if self.opts['fftMode'] == mode:
return
self.opts['fftMode'] = mode
self.xDisp = self.yDisp = None
self.updateItems(styleUpdate=False)
self.informViewBoundsChanged()
def setLogMode(self, xMode, yMode):
"""
To enable log scaling for y<0 and y>0, the following formula is used:
scaled = sign(y) * log10(abs(y) + eps)
where eps is the smallest unit of y.dtype.
This allows for handling of 0. values, scaling of large values,
as well as the typical log scaling of values in the range -1 < x < 1.
Note that for values within this range, the signs are inverted.
"""
if self.opts['logMode'] == [xMode, yMode]:
return
self.opts['logMode'] = [xMode, yMode]
self.xDisp = self.yDisp = None
self.updateItems(styleUpdate=False)
self.informViewBoundsChanged()
def setDerivativeMode(self, mode):
if self.opts['derivativeMode'] == mode:
return
self.opts['derivativeMode'] = mode
self.xDisp = self.yDisp = None
self.updateItems(styleUpdate=False)
self.informViewBoundsChanged()
def setPhasemapMode(self, mode):
if self.opts['phasemapMode'] == mode:
return
self.opts['phasemapMode'] = mode
self.xDisp = self.yDisp = None
self.updateItems(styleUpdate=False)
self.informViewBoundsChanged()
def setPointMode(self, mode):
if self.opts['pointMode'] == mode:
return
self.opts['pointMode'] = mode
self.update()
def setPen(self, *args, **kargs):
"""
| Sets the pen used to draw lines between points.
| *pen* can be a QPen or any argument accepted by :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>`
"""
pen = fn.mkPen(*args, **kargs)
self.opts['pen'] = pen
#self.curve.setPen(pen)
#for c in self.curves:
#c.setPen(pen)
#self.update()
self.updateItems(styleUpdate=True)
def setShadowPen(self, *args, **kargs):
"""
| Sets the shadow pen used to draw lines between points (this is for enhancing contrast or
emphacizing data).
| This line is drawn behind the primary pen (see :func:`setPen() <pyqtgraph.PlotDataItem.setPen>`)
and should generally be assigned greater width than the primary pen.
| *pen* can be a QPen or any argument accepted by :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>`
"""
pen = fn.mkPen(*args, **kargs)
self.opts['shadowPen'] = pen
#for c in self.curves:
#c.setPen(pen)
#self.update()
self.updateItems(styleUpdate=True)
def setFillBrush(self, *args, **kargs):
brush = fn.mkBrush(*args, **kargs)
if self.opts['fillBrush'] == brush:
return
self.opts['fillBrush'] = brush
self.updateItems(styleUpdate=True)
def setBrush(self, *args, **kargs):
return self.setFillBrush(*args, **kargs)
def setFillLevel(self, level):
if self.opts['fillLevel'] == level:
return
self.opts['fillLevel'] = level
self.updateItems(styleUpdate=True)
def setSymbol(self, symbol):
if self.opts['symbol'] == symbol:
return
self.opts['symbol'] = symbol
#self.scatter.setSymbol(symbol)
self.updateItems(styleUpdate=True)
def setSymbolPen(self, *args, **kargs):
pen = fn.mkPen(*args, **kargs)
if self.opts['symbolPen'] == pen:
return
self.opts['symbolPen'] = pen
#self.scatter.setSymbolPen(pen)
self.updateItems(styleUpdate=True)
def setSymbolBrush(self, *args, **kargs):
brush = fn.mkBrush(*args, **kargs)
if self.opts['symbolBrush'] == brush:
return
self.opts['symbolBrush'] = brush
#self.scatter.setSymbolBrush(brush)
self.updateItems(styleUpdate=True)
def setSymbolSize(self, size):
if self.opts['symbolSize'] == size:
return
self.opts['symbolSize'] = size
#self.scatter.setSymbolSize(symbolSize)
self.updateItems(styleUpdate=True)
def setDownsampling(self, ds=None, auto=None, method=None):
"""
Set the downsampling mode of this item. Downsampling reduces the number
of samples drawn to increase performance.
============== =================================================================
**Arguments:**
ds (int) Reduce visible plot samples by this factor. To disable,
set ds=1.
auto (bool) If True, automatically pick *ds* based on visible range
mode 'subsample': Downsample by taking the first of N samples.
This method is fastest and least accurate.
'mean': Downsample by taking the mean of N samples.
'peak': Downsample by drawing a saw wave that follows the min
and max of the original data. This method produces the best
visual representation of the data but is slower.
============== =================================================================
"""
changed = False
if ds is not None:
if self.opts['downsample'] != ds:
changed = True
self.opts['downsample'] = ds
if auto is not None and self.opts['autoDownsample'] != auto:
self.opts['autoDownsample'] = auto
changed = True
if method is not None:
if self.opts['downsampleMethod'] != method:
changed = True
self.opts['downsampleMethod'] = method
if changed:
self.xDisp = self.yDisp = None
self.updateItems(styleUpdate=False)
def setClipToView(self, clip):
if self.opts['clipToView'] == clip:
return
self.opts['clipToView'] = clip
self.xDisp = self.yDisp = None
self.updateItems(styleUpdate=False)
def setDynamicRangeLimit(self, limit=1e06, hysteresis=3.):
"""
Limit the off-screen positions of data points at large magnification
This avoids errors with plots not displaying because their visibility is incorrectly determined. The default setting repositions far-off points to be within +-1E+06 times the viewport height.
=============== ================================================================
**Arguments:**
limit (float or None) Any data outside the range of limit * hysteresis
will be constrained to the limit value limit.
All values are relative to the viewport height.
'None' disables the check for a minimal increase in performance.
Default is 1E+06.
hysteresis (float) Hysteresis factor that controls how much change
in zoom level (vertical height) is allowed before recalculating
Default is 3.0
=============== ================================================================
"""
if hysteresis < 1.0:
hysteresis = 1.0
self.opts['dynamicRangeHyst'] = hysteresis
if limit == self.opts['dynamicRangeLimit']:
return # avoid update if there is no change
self.opts['dynamicRangeLimit'] = limit # can be None
self.xDisp = self.yDisp = None
self.updateItems(styleUpdate=False)
def setData(self, *args, **kargs):
"""
Clear any data displayed by this item and display new data.
See :func:`__init__() <pyqtgraph.PlotDataItem.__init__>` for details; it accepts the same arguments.
"""
#self.clear()
if kargs.get("stepMode", None) is True:
warnings.warn(
'stepMode=True is deprecated, use stepMode="center" instead',
DeprecationWarning, stacklevel=3
)
if 'decimate' in kargs.keys():
warnings.warn(
'decimate kwarg has been deprecated, it has no effect',
DeprecationWarning, stacklevel=2
)
if 'identical' in kargs.keys():
warnings.warn(
'identical kwarg has been deprecated, it has no effect',
DeprecationWarning, stacklevel=2
)
profiler = debug.Profiler()
y = None
x = None
if len(args) == 1:
data = args[0]
dt = dataType(data)
if dt == 'empty':
pass
elif dt == 'listOfValues':
y = np.array(data)
elif dt == 'Nx2array':
x = data[:,0]
y = data[:,1]
elif dt == 'recarray' or dt == 'dictOfLists':
if 'x' in data:
x = np.array(data['x'])
if 'y' in data:
y = np.array(data['y'])
elif dt == 'listOfDicts':
if 'x' in data[0]:
x = np.array([d.get('x',None) for d in data])
if 'y' in data[0]:
y = np.array([d.get('y',None) for d in data])
for k in ['data', 'symbolSize', 'symbolPen', 'symbolBrush', 'symbolShape']:
if k in data:
kargs[k] = [d.get(k, None) for d in data]
elif dt == 'MetaArray':
y = data.view(np.ndarray)
x = data.xvals(0).view(np.ndarray)
else:
raise Exception('Invalid data type %s' % type(data))
elif len(args) == 2:
seq = ('listOfValues', 'MetaArray', 'empty')
dtyp = dataType(args[0]), dataType(args[1])
if dtyp[0] not in seq or dtyp[1] not in seq:
raise Exception('When passing two unnamed arguments, both must be a list or array of values. (got %s, %s)' % (str(type(args[0])), str(type(args[1]))))
if not isinstance(args[0], np.ndarray):
#x = np.array(args[0])
if dtyp[0] == 'MetaArray':
x = args[0].asarray()
else:
x = np.array(args[0])
else:
x = args[0].view(np.ndarray)
if not isinstance(args[1], np.ndarray):
#y = np.array(args[1])
if dtyp[1] == 'MetaArray':
y = args[1].asarray()
else:
y = np.array(args[1])
else:
y = args[1].view(np.ndarray)
if 'x' in kargs:
x = kargs['x']
if dataType(x) == 'MetaArray':
x = x.asarray()
if 'y' in kargs:
y = kargs['y']
if dataType(y) == 'MetaArray':
y = y.asarray()
profiler('interpret data')
## pull in all style arguments.
## Use self.opts to fill in anything not present in kargs.
if 'name' in kargs:
self.opts['name'] = kargs['name']
self.setProperty('styleWasChanged', True)
if 'connect' in kargs:
self.opts['connect'] = kargs['connect']
self.setProperty('styleWasChanged', True)
## if symbol pen/brush are given with no previously set symbol, then assume symbol is 'o'
if 'symbol' not in kargs and ('symbolPen' in kargs or 'symbolBrush' in kargs or 'symbolSize' in kargs):
if self.opts['symbol'] is None:
kargs['symbol'] = 'o'
if 'brush' in kargs:
kargs['fillBrush'] = kargs['brush']
for k in list(self.opts.keys()):
if k in kargs:
self.opts[k] = kargs[k]
self.setProperty('styleWasChanged', True)
#curveArgs = {}
#for k in ['pen', 'shadowPen', 'fillLevel', 'brush']:
#if k in kargs:
#self.opts[k] = kargs[k]
#curveArgs[k] = self.opts[k]
#scatterArgs = {}
#for k,v in [('symbolPen','pen'), ('symbolBrush','brush'), ('symbol','symbol')]:
#if k in kargs:
#self.opts[k] = kargs[k]
#scatterArgs[v] = self.opts[k]
if y is None or len(y) == 0: # empty data is represented as None
self.yData = None
else: # actual data is represented by ndarray
if not isinstance(y, np.ndarray):
y = np.array(y)
self.yData = y.view(np.ndarray)
if x is None:
x = np.arange(len(y))
if x is None or len(x)==0: # empty data is represented as None
self.xData = None
else: # actual data is represented by ndarray
if not isinstance(x, np.ndarray):
x = np.array(x)
self.xData = x.view(np.ndarray) # one last check to make sure there are no MetaArrays getting by
self._dataRect = None
self.xDisp = None
self.yDisp = None
profiler('set data')
self.updateItems( styleUpdate = self.property('styleWasChanged') )
self.setProperty('styleWasChanged', False) # items have been updated
profiler('update items')
self.informViewBoundsChanged()
self.sigPlotChanged.emit(self)
profiler('emit')
def updateItems(self, styleUpdate=True):
# override styleUpdate request and always enforce update until we have a better solution for
# - ScatterPlotItem losing per-point style information
# - PlotDataItem performing multiple unnecessary setData call on initialization
styleUpdate=True
curveArgs = {}
scatterArgs = {}
if styleUpdate: # repeat style arguments only when changed
for k, v in [
('pen','pen'),
('shadowPen','shadowPen'),
('fillLevel','fillLevel'),
('fillOutline', 'fillOutline'),
('fillBrush', 'brush'),
('antialias', 'antialias'),
('connect', 'connect'),
('stepMode', 'stepMode'),
('skipFiniteCheck', 'skipFiniteCheck')
]:
if k in self.opts:
curveArgs[v] = self.opts[k]
for k, v in [
('symbolPen','pen'),
('symbolBrush','brush'),
('symbol','symbol'),
('symbolSize', 'size'),
('data', 'data'),
('pxMode', 'pxMode'),
('antialias', 'antialias')
]:
if k in self.opts:
scatterArgs[v] = self.opts[k]
x,y = self.getData()
#scatterArgs['mask'] = self.dataMask
if self.opts['pen'] is not None or (self.opts['fillBrush'] is not None and self.opts['fillLevel'] is not None): # draw if visible...
self.curve.setData(x=x, y=y, **curveArgs)
self.curve.show()
else: # ...hide if not.
self.curve.hide()
if self.opts['symbol'] is not None: # draw if visible...
## check against `True` too for backwards compatibility
if self.opts.get('stepMode', False) in ("center", True):
x = 0.5 * (x[:-1] + x[1:])
self.scatter.setData(x=x, y=y, **scatterArgs)
self.scatter.show()
else: # ...hide if not.
self.scatter.hide()
def getData(self):
if self.xData is None:
return (None, None)
if( self.xDisp is not None and
not (self.property('xViewRangeWasChanged') and self.opts['clipToView']) and
not (self.property('xViewRangeWasChanged') and self.opts['autoDownsample']) and
not (self.property('yViewRangeWasChanged') and self.opts['dynamicRangeLimit'] is not None)
):
return self.xDisp, self.yDisp
x = self.xData
y = self.yData
if y.dtype == bool:
y = y.astype(np.uint8)
if x.dtype == bool:
x = x.astype(np.uint8)
view = self.getViewBox()
if view is None:
view_range = None
else:
view_range = self.getViewBox().viewRect() # this is always up-to-date
if view_range is None:
view_range = self.viewRect()
if self.opts['fftMode']:
x,y = self._fourierTransform(x, y)
# Ignore the first bin for fft data if we have a logx scale
if self.opts['logMode'][0]:
x=x[1:]
y=y[1:]
if self.opts['derivativeMode']: # plot dV/dt
y = np.diff(self.yData)/np.diff(self.xData)
x = x[:-1]
if self.opts['phasemapMode']: # plot dV/dt vs V
x = self.yData[:-1]
y = np.diff(self.yData)/np.diff(self.xData)
with np.errstate(divide='ignore'):
if self.opts['logMode'][0]:
x = np.log10(x)
if self.opts['logMode'][1]:
if np.issubdtype(y.dtype, np.floating):
eps = np.finfo(y.dtype).eps
else:
eps = 1
y = np.copysign(np.log10(np.abs(y)+eps), y)
ds = self.opts['downsample']
if not isinstance(ds, int):
ds = 1
if self.opts['autoDownsample']:
# this option presumes that x-values have uniform spacing
if view_range is not None and len(x) > 1:
dx = float(x[-1]-x[0]) / (len(x)-1)
if dx != 0.0:
x0 = (view_range.left()-x[0]) / dx
x1 = (view_range.right()-x[0]) / dx
width = self.getViewBox().width()
if width != 0.0:
ds = int(max(1, int((x1-x0) / (width*self.opts['autoDownsampleFactor']))))
## downsampling is expensive; delay until after clipping.
if self.opts['clipToView']:
if view is None or view.autoRangeEnabled()[0]:
pass # no ViewBox to clip to, or view will autoscale to data range.
else:
# clip-to-view always presumes that x-values are in increasing order
if view_range is not None and len(x) > 1:
# print('search:', view_range.left(),'-',view_range.right() )
# find first in-view value (left edge) and first out-of-view value (right edge)
# since we want the curve to go to the edge of the screen, we need to preserve
# one down-sampled point on the left and one of the right, so we extend the interval
x0 = np.searchsorted(x, view_range.left()) - ds
x0 = fn.clip_scalar(x0, 0, len(x)) # workaround
# x0 = np.clip(x0, 0, len(x))
x1 = np.searchsorted(x, view_range.right()) + ds
x1 = fn.clip_scalar(x1, x0, len(x))
# x1 = np.clip(x1, 0, len(x))
x = x[x0:x1]
y = y[x0:x1]
if ds > 1:
if self.opts['downsampleMethod'] == 'subsample':
x = x[::ds]
y = y[::ds]
elif self.opts['downsampleMethod'] == 'mean':
n = len(x) // ds
# x = x[:n*ds:ds]
stx = ds//2 # start of x-values; try to select a somewhat centered point
x = x[stx:stx+n*ds:ds]
y = y[:n*ds].reshape(n,ds).mean(axis=1)
elif self.opts['downsampleMethod'] == 'peak':
n = len(x) // ds
x1 = np.empty((n,2))
stx = ds//2 # start of x-values; try to select a somewhat centered point
x1[:] = x[stx:stx+n*ds:ds,np.newaxis]
x = x1.reshape(n*2)
y1 = np.empty((n,2))
y2 = y[:n*ds].reshape((n, ds))
y1[:,0] = y2.max(axis=1)
y1[:,1] = y2.min(axis=1)
y = y1.reshape(n*2)
if self.opts['dynamicRangeLimit'] is not None:
if view_range is not None:
data_range = self.dataRect()
if data_range is not None:
view_height = view_range.height()
limit = self.opts['dynamicRangeLimit']
hyst = self.opts['dynamicRangeHyst']
# never clip data if it fits into +/- (extended) limit * view height
if ( # note that "bottom" is the larger number, and "top" is the smaller one.
not data_range.bottom() < view_range.top() # never clip if all data is too small to see
and not data_range.top() > view_range.bottom() # never clip if all data is too large to see
and data_range.height() > 2 * hyst * limit * view_height
):
cache_is_good = False
# check if cached display data can be reused:
if self.yDisp is not None: # top is minimum value, bottom is maximum value
# how many multiples of the current view height does the clipped plot extend to the top and bottom?
top_exc =-(self._drlLastClip[0]-view_range.bottom()) / view_height
bot_exc = (self._drlLastClip[1]-view_range.top() ) / view_height
# print(top_exc, bot_exc, hyst)
if ( top_exc >= limit / hyst and top_exc <= limit * hyst
and bot_exc >= limit / hyst and bot_exc <= limit * hyst ):
# restore cached values
x = self.xDisp
y = self.yDisp
cache_is_good = True
if not cache_is_good:
min_val = view_range.bottom() - limit * view_height
max_val = view_range.top() + limit * view_height
if( self.yDisp is not None # Do we have an existing cache?
and min_val >= self._drlLastClip[0] # Are we reducing it further?
and max_val <= self._drlLastClip[1] ):
# if we need to clip further, we can work in-place on the output buffer
# print('in-place:', end='')
# workaround for slowdown from numpy deprecation issues in 1.17 to 1.20+ :
# np.clip(self.yDisp, out=self.yDisp, a_min=min_val, a_max=max_val)
fn.clip_array(self.yDisp, min_val, max_val, out=self.yDisp)
self._drlLastClip = (min_val, max_val)
# print('{:.1e}<->{:.1e}'.format( min_val, max_val ))
x = self.xDisp
y = self.yDisp
else:
# if none of the shortcuts worked, we need to recopy from the full data
# print('alloc:', end='')
# workaround for slowdown from numpy deprecation issues in 1.17 to 1.20+ :
# y = np.clip(y, a_min=min_val, a_max=max_val)
y = fn.clip_array(y, min_val, max_val)
self._drlLastClip = (min_val, max_val)
# print('{:.1e}<->{:.1e}'.format( min_val, max_val ))
self.xDisp = x
self.yDisp = y
self.setProperty('xViewRangeWasChanged', False)
self.setProperty('yViewRangeWasChanged', False)
return self.xDisp, self.yDisp
def dataRect(self):
"""
Returns a bounding rectangle (as QRectF) for the full set of data.
Will return None if there is no data or if all values (x or y) are NaN.
"""
if self._dataRect is not None:
return self._dataRect
if self.xData is None or self.yData is None:
return None
if len(self.xData) == 0: # avoid crash if empty data is represented by [] instead of None
return None
with warnings.catch_warnings():
# All-NaN data is handled by returning None; Explicit numpy warning is not needed.
warnings.simplefilter("ignore")
ymin = np.nanmin(self.yData)
if math.isnan( ymin ):
return None # most likely case for all-NaN data
xmin = np.nanmin(self.xData)
if math.isnan( xmin ):
return None # less likely case for all-NaN data
ymax = np.nanmax(self.yData)
xmax = np.nanmax(self.xData)
self._dataRect = QtCore.QRectF(
QtCore.QPointF(xmin,ymin),
QtCore.QPointF(xmax,ymax) )
return self._dataRect
def dataBounds(self, ax, frac=1.0, orthoRange=None):
"""
Returns the range occupied by the data (along a specific axis) in this item.
This method is called by ViewBox when auto-scaling.
=============== =============================================================
**Arguments:**
ax (0 or 1) the axis for which to return this item's data range
frac (float 0.0-1.0) Specifies what fraction of the total data
range to return. By default, the entire range is returned.
This allows the ViewBox to ignore large spikes in the data
when auto-scaling.
orthoRange ([min,max] or None) Specifies that only the data within the
given range (orthogonal to *ax*) should me measured when
returning the data range. (For example, a ViewBox might ask
what is the y-range of all data with x-values between min
and max)
=============== =============================================================
"""
range = [None, None]
if self.curve.isVisible():
range = self.curve.dataBounds(ax, frac, orthoRange)
elif self.scatter.isVisible():
r2 = self.scatter.dataBounds(ax, frac, orthoRange)
range = [
r2[0] if range[0] is None else (range[0] if r2[0] is None else min(r2[0], range[0])),
r2[1] if range[1] is None else (range[1] if r2[1] is None else min(r2[1], range[1]))
]
return range
def pixelPadding(self):
"""
Return the size in pixels that this item may draw beyond the values returned by dataBounds().
This method is called by ViewBox when auto-scaling.
"""
pad = 0
if self.curve.isVisible():
pad = max(pad, self.curve.pixelPadding())
elif self.scatter.isVisible():
pad = max(pad, self.scatter.pixelPadding())
return pad
def clear(self):
self.xData = None
self.yData = None
self.xDisp = None
self.yDisp = None
self._dataRect = None
self.curve.clear()
self.scatter.clear()
def appendData(self, *args, **kargs):
pass
def curveClicked(self, curve, ev):
self.sigClicked.emit(self, ev)
def scatterClicked(self, plt, points, ev):
self.sigClicked.emit(self, ev)
self.sigPointsClicked.emit(self, points, ev)
def scatterHovered(self, plt, points, ev):
self.sigPointsHovered.emit(self, points, ev)
# def viewTransformChanged(self):
# """ view transform (and thus range) has changed, replot if needed """
# viewTransformChanged is only called when the cached viewRect of GraphicsItem
# has already been invalidated. However, responding here will make PlotDataItem
# update curve and scatter later than intended.
# super().viewTransformChanged() # this invalidates the viewRect() cache!
def viewRangeChanged(self, vb=None, ranges=None, changed=None):
""" view range has changed; re-plot if needed """
update_needed = False
if changed is None or changed[0]:
# if ranges is not None:
# print('hor:', ranges[0])
self.setProperty('xViewRangeWasChanged', True)
if( self.opts['clipToView']
or self.opts['autoDownsample']
):
self.xDisp = self.yDisp = None
update_needed = True
if changed is None or changed[1]:
# if ranges is not None:
# print('ver:', ranges[1])
self.setProperty('yViewRangeWasChanged', True)
if self.opts['dynamicRangeLimit'] is not None:
# update, but do not discard cached display data
update_needed = True
if update_needed:
self.updateItems(styleUpdate=False)
def _fourierTransform(self, x, y):
## Perform Fourier transform. If x values are not sampled uniformly,
## then use np.interp to resample before taking fft.
dx = np.diff(x)
uniform = not np.any(np.abs(dx-dx[0]) > (abs(dx[0]) / 1000.))
if not uniform:
x2 = np.linspace(x[0], x[-1], len(x))
y = np.interp(x2, x, y)
x = x2
n = y.size
f = np.fft.rfft(y) / n
d = float(x[-1]-x[0]) / (len(x)-1)
x = np.fft.rfftfreq(n, d)
y = np.abs(f)
return x, y
def dataType(obj):
if hasattr(obj, '__len__') and len(obj) == 0:
return 'empty'
if isinstance(obj, dict):
return 'dictOfLists'
elif isSequence(obj):
first = obj[0]
if (hasattr(obj, 'implements') and obj.implements('MetaArray')):
return 'MetaArray'
elif isinstance(obj, np.ndarray):
if obj.ndim == 1:
if obj.dtype.names is None:
return 'listOfValues'
else:
return 'recarray'
elif obj.ndim == 2 and obj.dtype.names is None and obj.shape[1] == 2:
return 'Nx2array'
else:
raise Exception('array shape must be (N,) or (N,2); got %s instead' % str(obj.shape))
elif isinstance(first, dict):
return 'listOfDicts'
else:
return 'listOfValues'
def isSequence(obj):
return hasattr(obj, '__iter__') or isinstance(obj, np.ndarray) or (hasattr(obj, 'implements') and obj.implements('MetaArray'))
#class TableData:
#"""
#Class for presenting multiple forms of tabular data through a consistent interface.
#May contain:
#- numpy record array
#- list-of-dicts (all dicts are _not_ required to have the same keys)
#- dict-of-lists
#- dict (single record)
#Note: if all the values in this record are lists, it will be interpreted as multiple records
#Data can be accessed and modified by column, by row, or by value
#data[columnName]
#data[rowId]
#data[columnName, rowId] = value
#data[columnName] = [value, value, ...]
#data[rowId] = {columnName: value, ...}
#"""
#def __init__(self, data):
#self.data = data
#if isinstance(data, np.ndarray):
#self.mode = 'array'
#elif isinstance(data, list):
#self.mode = 'list'
#elif isinstance(data, dict):
#types = set(map(type, data.values()))
### dict may be a dict-of-lists or a single record
#types -= set([list, np.ndarray]) ## if dict contains any non-sequence values, it is probably a single record.
#if len(types) != 0:
#self.data = [self.data]
#self.mode = 'list'
#else:
#self.mode = 'dict'
#elif isinstance(data, TableData):
#self.data = data.data
#self.mode = data.mode
#else:
#raise TypeError(type(data))
#for fn in ['__getitem__', '__setitem__']:
#setattr(self, fn, getattr(self, '_TableData'+fn+self.mode))
#def originalData(self):
#return self.data
#def toArray(self):
#if self.mode == 'array':
#return self.data
#if len(self) < 1:
##return np.array([]) ## need to return empty array *with correct columns*, but this is very difficult, so just return None
#return None
#rec1 = self[0]
#dtype = functions.suggestRecordDType(rec1)
##print rec1, dtype
#arr = np.empty(len(self), dtype=dtype)
#arr[0] = tuple(rec1.values())
#for i in xrange(1, len(self)):
#arr[i] = tuple(self[i].values())
#return arr
#def __getitem__array(self, arg):
#if isinstance(arg, tuple):
#return self.data[arg[0]][arg[1]]
#else:
#return self.data[arg]
#def __getitem__list(self, arg):
#if isinstance(arg, basestring):
#return [d.get(arg, None) for d in self.data]
#elif isinstance(arg, int):
#return self.data[arg]
#elif isinstance(arg, tuple):
#arg = self._orderArgs(arg)
#return self.data[arg[0]][arg[1]]
#else:
#raise TypeError(type(arg))
#def __getitem__dict(self, arg):
#if isinstance(arg, basestring):
#return self.data[arg]
#elif isinstance(arg, int):
#return dict([(k, v[arg]) for k, v in self.data.items()])
#elif isinstance(arg, tuple):
#arg = self._orderArgs(arg)
#return self.data[arg[1]][arg[0]]
#else:
#raise TypeError(type(arg))
#def __setitem__array(self, arg, val):
#if isinstance(arg, tuple):
#self.data[arg[0]][arg[1]] = val
#else:
#self.data[arg] = val
#def __setitem__list(self, arg, val):
#if isinstance(arg, basestring):
#if len(val) != len(self.data):
#raise Exception("Values (%d) and data set (%d) are not the same length." % (len(val), len(self.data)))
#for i, rec in enumerate(self.data):
#rec[arg] = val[i]
#elif isinstance(arg, int):
#self.data[arg] = val
#elif isinstance(arg, tuple):
#arg = self._orderArgs(arg)
#self.data[arg[0]][arg[1]] = val
#else:
#raise TypeError(type(arg))
#def __setitem__dict(self, arg, val):
#if isinstance(arg, basestring):
#if len(val) != len(self.data[arg]):
#raise Exception("Values (%d) and data set (%d) are not the same length." % (len(val), len(self.data[arg])))
#self.data[arg] = val
#elif isinstance(arg, int):
#for k in self.data:
#self.data[k][arg] = val[k]
#elif isinstance(arg, tuple):
#arg = self._orderArgs(arg)
#self.data[arg[1]][arg[0]] = val
#else:
#raise TypeError(type(arg))
#def _orderArgs(self, args):
### return args in (int, str) order
#if isinstance(args[0], basestring):
#return (args[1], args[0])
#else:
#return args
#def __iter__(self):
#for i in xrange(len(self)):
#yield self[i]
#def __len__(self):
#if self.mode == 'array' or self.mode == 'list':
#return len(self.data)
#else:
#return max(map(len, self.data.values()))
#def columnNames(self):
#"""returns column names in no particular order"""
#if self.mode == 'array':
#return self.data.dtype.names
#elif self.mode == 'list':
#names = set()
#for row in self.data:
#names.update(row.keys())
#return list(names)
#elif self.mode == 'dict':
#return self.data.keys()
#def keys(self):
#return self.columnNames()