288 lines
9.2 KiB
Python
288 lines
9.2 KiB
Python
import scipy
|
|
import numpy as np
|
|
from pyqtgraph.metaarray import MetaArray
|
|
|
|
def downsample(data, n, axis=0, xvals='subsample'):
|
|
"""Downsample by averaging points together across axis.
|
|
If multiple axes are specified, runs once per axis.
|
|
If a metaArray is given, then the axis values can be either subsampled
|
|
or downsampled to match.
|
|
"""
|
|
ma = None
|
|
if (hasattr(data, 'implements') and data.implements('MetaArray')):
|
|
ma = data
|
|
data = data.view(np.ndarray)
|
|
|
|
|
|
if hasattr(axis, '__len__'):
|
|
if not hasattr(n, '__len__'):
|
|
n = [n]*len(axis)
|
|
for i in range(len(axis)):
|
|
data = downsample(data, n[i], axis[i])
|
|
return data
|
|
|
|
nPts = int(data.shape[axis] / n)
|
|
s = list(data.shape)
|
|
s[axis] = nPts
|
|
s.insert(axis+1, n)
|
|
sl = [slice(None)] * data.ndim
|
|
sl[axis] = slice(0, nPts*n)
|
|
d1 = data[tuple(sl)]
|
|
#print d1.shape, s
|
|
d1.shape = tuple(s)
|
|
d2 = d1.mean(axis+1)
|
|
|
|
if ma is None:
|
|
return d2
|
|
else:
|
|
info = ma.infoCopy()
|
|
if 'values' in info[axis]:
|
|
if xvals == 'subsample':
|
|
info[axis]['values'] = info[axis]['values'][::n][:nPts]
|
|
elif xvals == 'downsample':
|
|
info[axis]['values'] = downsample(info[axis]['values'], n)
|
|
return MetaArray(d2, info=info)
|
|
|
|
|
|
def applyFilter(data, b, a, padding=100, bidir=True):
|
|
"""Apply a linear filter with coefficients a, b. Optionally pad the data before filtering
|
|
and/or run the filter in both directions."""
|
|
d1 = data.view(np.ndarray)
|
|
|
|
if padding > 0:
|
|
d1 = np.hstack([d1[:padding], d1, d1[-padding:]])
|
|
|
|
if bidir:
|
|
d1 = scipy.signal.lfilter(b, a, scipy.signal.lfilter(b, a, d1)[::-1])[::-1]
|
|
else:
|
|
d1 = scipy.signal.lfilter(b, a, d1)
|
|
|
|
if padding > 0:
|
|
d1 = d1[padding:-padding]
|
|
|
|
if (hasattr(data, 'implements') and data.implements('MetaArray')):
|
|
return MetaArray(d1, info=data.infoCopy())
|
|
else:
|
|
return d1
|
|
|
|
def besselFilter(data, cutoff, order=1, dt=None, btype='low', bidir=True):
|
|
"""return data passed through bessel filter"""
|
|
if dt is None:
|
|
try:
|
|
tvals = data.xvals('Time')
|
|
dt = (tvals[-1]-tvals[0]) / (len(tvals)-1)
|
|
except:
|
|
dt = 1.0
|
|
|
|
b,a = scipy.signal.bessel(order, cutoff * dt, btype=btype)
|
|
|
|
return applyFilter(data, b, a, bidir=bidir)
|
|
#base = data.mean()
|
|
#d1 = scipy.signal.lfilter(b, a, data.view(ndarray)-base) + base
|
|
#if (hasattr(data, 'implements') and data.implements('MetaArray')):
|
|
#return MetaArray(d1, info=data.infoCopy())
|
|
#return d1
|
|
|
|
def butterworthFilter(data, wPass, wStop=None, gPass=2.0, gStop=20.0, order=1, dt=None, btype='low', bidir=True):
|
|
"""return data passed through bessel filter"""
|
|
if dt is None:
|
|
try:
|
|
tvals = data.xvals('Time')
|
|
dt = (tvals[-1]-tvals[0]) / (len(tvals)-1)
|
|
except:
|
|
dt = 1.0
|
|
|
|
if wStop is None:
|
|
wStop = wPass * 2.0
|
|
ord, Wn = scipy.signal.buttord(wPass*dt*2., wStop*dt*2., gPass, gStop)
|
|
#print "butterworth ord %f Wn %f c %f sc %f" % (ord, Wn, cutoff, stopCutoff)
|
|
b,a = scipy.signal.butter(ord, Wn, btype=btype)
|
|
|
|
return applyFilter(data, b, a, bidir=bidir)
|
|
|
|
|
|
def rollingSum(data, n):
|
|
d1 = data.copy()
|
|
d1[1:] += d1[:-1] # integrate
|
|
d2 = np.empty(len(d1) - n + 1, dtype=data.dtype)
|
|
d2[0] = d1[n-1] # copy first point
|
|
d2[1:] = d1[n:] - d1[:-n] # subtract
|
|
return d2
|
|
|
|
|
|
def mode(data, bins=None):
|
|
"""Returns location max value from histogram."""
|
|
if bins is None:
|
|
bins = int(len(data)/10.)
|
|
if bins < 2:
|
|
bins = 2
|
|
y, x = np.histogram(data, bins=bins)
|
|
ind = np.argmax(y)
|
|
mode = 0.5 * (x[ind] + x[ind+1])
|
|
return mode
|
|
|
|
def modeFilter(data, window=500, step=None, bins=None):
|
|
"""Filter based on histogram-based mode function"""
|
|
d1 = data.view(np.ndarray)
|
|
vals = []
|
|
l2 = int(window/2.)
|
|
if step is None:
|
|
step = l2
|
|
i = 0
|
|
while True:
|
|
if i > len(data)-step:
|
|
break
|
|
vals.append(mode(d1[i:i+window], bins))
|
|
i += step
|
|
|
|
chunks = [np.linspace(vals[0], vals[0], l2)]
|
|
for i in range(len(vals)-1):
|
|
chunks.append(np.linspace(vals[i], vals[i+1], step))
|
|
remain = len(data) - step*(len(vals)-1) - l2
|
|
chunks.append(np.linspace(vals[-1], vals[-1], remain))
|
|
d2 = np.hstack(chunks)
|
|
|
|
if (hasattr(data, 'implements') and data.implements('MetaArray')):
|
|
return MetaArray(d2, info=data.infoCopy())
|
|
return d2
|
|
|
|
def denoise(data, radius=2, threshold=4):
|
|
"""Very simple noise removal function. Compares a point to surrounding points,
|
|
replaces with nearby values if the difference is too large."""
|
|
|
|
|
|
r2 = radius * 2
|
|
d1 = data.view(np.ndarray)
|
|
d2 = d1[radius:] - d1[:-radius] #a derivative
|
|
#d3 = data[r2:] - data[:-r2]
|
|
#d4 = d2 - d3
|
|
stdev = d2.std()
|
|
#print "denoise: stdev of derivative:", stdev
|
|
mask1 = d2 > stdev*threshold #where derivative is large and positive
|
|
mask2 = d2 < -stdev*threshold #where derivative is large and negative
|
|
maskpos = mask1[:-radius] * mask2[radius:] #both need to be true
|
|
maskneg = mask1[radius:] * mask2[:-radius]
|
|
mask = maskpos + maskneg
|
|
d5 = np.where(mask, d1[:-r2], d1[radius:-radius]) #where both are true replace the value with the value from 2 points before
|
|
d6 = np.empty(d1.shape, dtype=d1.dtype) #add points back to the ends
|
|
d6[radius:-radius] = d5
|
|
d6[:radius] = d1[:radius]
|
|
d6[-radius:] = d1[-radius:]
|
|
|
|
if (hasattr(data, 'implements') and data.implements('MetaArray')):
|
|
return MetaArray(d6, info=data.infoCopy())
|
|
return d6
|
|
|
|
def adaptiveDetrend(data, x=None, threshold=3.0):
|
|
"""Return the signal with baseline removed. Discards outliers from baseline measurement."""
|
|
if x is None:
|
|
x = data.xvals(0)
|
|
|
|
d = data.view(np.ndarray)
|
|
|
|
d2 = scipy.signal.detrend(d)
|
|
|
|
stdev = d2.std()
|
|
mask = abs(d2) < stdev*threshold
|
|
#d3 = where(mask, 0, d2)
|
|
#d4 = d2 - lowPass(d3, cutoffs[1], dt=dt)
|
|
|
|
lr = stats.linregress(x[mask], d[mask])
|
|
base = lr[1] + lr[0]*x
|
|
d4 = d - base
|
|
|
|
if (hasattr(data, 'implements') and data.implements('MetaArray')):
|
|
return MetaArray(d4, info=data.infoCopy())
|
|
return d4
|
|
|
|
|
|
def histogramDetrend(data, window=500, bins=50, threshold=3.0):
|
|
"""Linear detrend. Works by finding the most common value at the beginning and end of a trace, excluding outliers."""
|
|
|
|
d1 = data.view(np.ndarray)
|
|
d2 = [d1[:window], d1[-window:]]
|
|
v = [0, 0]
|
|
for i in [0, 1]:
|
|
d3 = d2[i]
|
|
stdev = d3.std()
|
|
mask = abs(d3-np.median(d3)) < stdev*threshold
|
|
d4 = d3[mask]
|
|
y, x = np.histogram(d4, bins=bins)
|
|
ind = np.argmax(y)
|
|
v[i] = 0.5 * (x[ind] + x[ind+1])
|
|
|
|
base = np.linspace(v[0], v[1], len(data))
|
|
d3 = data.view(np.ndarray) - base
|
|
|
|
if (hasattr(data, 'implements') and data.implements('MetaArray')):
|
|
return MetaArray(d3, info=data.infoCopy())
|
|
return d3
|
|
|
|
def concatenateColumns(data):
|
|
"""Returns a single record array with columns taken from the elements in data.
|
|
data should be a list of elements, which can be either record arrays or tuples (name, type, data)
|
|
"""
|
|
|
|
## first determine dtype
|
|
dtype = []
|
|
names = set()
|
|
maxLen = 0
|
|
for element in data:
|
|
if isinstance(element, np.ndarray):
|
|
## use existing columns
|
|
for i in range(len(element.dtype)):
|
|
name = element.dtype.names[i]
|
|
dtype.append((name, element.dtype[i]))
|
|
maxLen = max(maxLen, len(element))
|
|
else:
|
|
name, type, d = element
|
|
if type is None:
|
|
type = suggestDType(d)
|
|
dtype.append((name, type))
|
|
if isinstance(d, list) or isinstance(d, np.ndarray):
|
|
maxLen = max(maxLen, len(d))
|
|
if name in names:
|
|
raise Exception('Name "%s" repeated' % name)
|
|
names.add(name)
|
|
|
|
|
|
|
|
## create empty array
|
|
out = np.empty(maxLen, dtype)
|
|
|
|
## fill columns
|
|
for element in data:
|
|
if isinstance(element, np.ndarray):
|
|
for i in range(len(element.dtype)):
|
|
name = element.dtype.names[i]
|
|
try:
|
|
out[name] = element[name]
|
|
except:
|
|
print("Column:", name)
|
|
print("Input shape:", element.shape, element.dtype)
|
|
print("Output shape:", out.shape, out.dtype)
|
|
raise
|
|
else:
|
|
name, type, d = element
|
|
out[name] = d
|
|
|
|
return out
|
|
|
|
def suggestDType(x):
|
|
"""Return a suitable dtype for x"""
|
|
if isinstance(x, list) or isinstance(x, tuple):
|
|
if len(x) == 0:
|
|
raise Exception('can not determine dtype for empty list')
|
|
x = x[0]
|
|
|
|
if hasattr(x, 'dtype'):
|
|
return x.dtype
|
|
elif isinstance(x, float):
|
|
return float
|
|
elif isinstance(x, int):
|
|
return int
|
|
#elif isinstance(x, basestring): ## don't try to guess correct string length; use object instead.
|
|
#return '<U%d' % len(x)
|
|
else:
|
|
return object
|