pyqtgraph/examples/GLIsosurface.py
Ogi Moore b0a3849960 Use math module methods for singular values
Using numpy methods that are intended for vectorized operations is
substantially slower than using the math module, so when feasible the
math module methods should be used.
2021-04-23 11:53:00 -07:00

66 lines
1.6 KiB
Python

# -*- coding: utf-8 -*-
"""
This example uses the isosurface function to convert a scalar field
(a hydrogen orbital) into a mesh for 3D display.
"""
## Add path to library (just for examples; you do not need this)
import initExample
import numpy as np
from pyqtgraph.Qt import QtCore, QtGui
import pyqtgraph as pg
import pyqtgraph.opengl as gl
app = pg.mkQApp("GLIsosurface Example")
w = gl.GLViewWidget()
w.show()
w.setWindowTitle('pyqtgraph example: GLIsosurface')
w.setCameraPosition(distance=40)
g = gl.GLGridItem()
g.scale(2,2,1)
w.addItem(g)
## Define a scalar field from which we will generate an isosurface
def psi(i, j, k, offset=(25, 25, 50)):
x = i-offset[0]
y = j-offset[1]
z = k-offset[2]
th = np.arctan2(z, np.sqrt(x**2+y**2))
phi = np.arctan2(y, x)
r = np.sqrt(x**2 + y**2 + z **2)
a0 = 1
ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1)
return ps
print("Generating scalar field..")
data = np.abs(np.fromfunction(psi, (50,50,100)))
print("Generating isosurface..")
verts, faces = pg.isosurface(data, data.max()/4.)
md = gl.MeshData(vertexes=verts, faces=faces)
colors = np.ones((md.faceCount(), 4), dtype=float)
colors[:,3] = 0.2
colors[:,2] = np.linspace(0, 1, colors.shape[0])
md.setFaceColors(colors)
m1 = gl.GLMeshItem(meshdata=md, smooth=False, shader='balloon')
m1.setGLOptions('additive')
#w.addItem(m1)
m1.translate(-25, -25, -20)
m2 = gl.GLMeshItem(meshdata=md, smooth=True, shader='balloon')
m2.setGLOptions('additive')
w.addItem(m2)
m2.translate(-25, -25, -50)
if __name__ == '__main__':
pg.mkQApp().exec_()