118 lines
3.1 KiB
Python
118 lines
3.1 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Demonstrates common image analysis tools.
|
|
|
|
Many of the features demonstrated here are already provided by the ImageView
|
|
widget, but here we present a lower-level approach that provides finer control
|
|
over the user interface.
|
|
"""
|
|
import initExample ## Add path to library (just for examples; you do not need this)
|
|
|
|
import pyqtgraph as pg
|
|
from pyqtgraph.Qt import QtCore, QtGui
|
|
import numpy as np
|
|
|
|
|
|
# Interpret image data as row-major instead of col-major
|
|
pg.setConfigOptions(imageAxisOrder='row-major')
|
|
|
|
pg.mkQApp()
|
|
win = pg.GraphicsLayoutWidget()
|
|
win.setWindowTitle('pyqtgraph example: Image Analysis')
|
|
|
|
# A plot area (ViewBox + axes) for displaying the image
|
|
p1 = win.addPlot(title="")
|
|
|
|
# Item for displaying image data
|
|
img = pg.ImageItem()
|
|
p1.addItem(img)
|
|
|
|
# Custom ROI for selecting an image region
|
|
roi = pg.ROI([-8, 14], [6, 5])
|
|
roi.addScaleHandle([0.5, 1], [0.5, 0.5])
|
|
roi.addScaleHandle([0, 0.5], [0.5, 0.5])
|
|
p1.addItem(roi)
|
|
roi.setZValue(10) # make sure ROI is drawn above image
|
|
|
|
# Isocurve drawing
|
|
iso = pg.IsocurveItem(level=0.8, pen='g')
|
|
iso.setParentItem(img)
|
|
iso.setZValue(5)
|
|
|
|
# Contrast/color control
|
|
hist = pg.HistogramLUTItem()
|
|
hist.setImageItem(img)
|
|
win.addItem(hist)
|
|
|
|
# Draggable line for setting isocurve level
|
|
isoLine = pg.InfiniteLine(angle=0, movable=True, pen='g')
|
|
hist.vb.addItem(isoLine)
|
|
hist.vb.setMouseEnabled(y=False) # makes user interaction a little easier
|
|
isoLine.setValue(0.8)
|
|
isoLine.setZValue(1000) # bring iso line above contrast controls
|
|
|
|
# Another plot area for displaying ROI data
|
|
win.nextRow()
|
|
p2 = win.addPlot(colspan=2)
|
|
p2.setMaximumHeight(250)
|
|
win.resize(800, 800)
|
|
win.show()
|
|
|
|
|
|
# Generate image data
|
|
data = np.random.normal(size=(200, 100))
|
|
data[20:80, 20:80] += 2.
|
|
data = pg.gaussianFilter(data, (3, 3))
|
|
data += np.random.normal(size=(200, 100)) * 0.1
|
|
img.setImage(data)
|
|
hist.setLevels(data.min(), data.max())
|
|
|
|
# build isocurves from smoothed data
|
|
iso.setData(pg.gaussianFilter(data, (2, 2)))
|
|
|
|
# set position and scale of image
|
|
tr = QtGui.QTransform()
|
|
img.setTransform(tr.scale(0.2, 0.2).translate(-50, 0))
|
|
|
|
# zoom to fit imageo
|
|
p1.autoRange()
|
|
|
|
|
|
# Callbacks for handling user interaction
|
|
def updatePlot():
|
|
global img, roi, data, p2
|
|
selected = roi.getArrayRegion(data, img)
|
|
p2.plot(selected.mean(axis=0), clear=True)
|
|
|
|
roi.sigRegionChanged.connect(updatePlot)
|
|
updatePlot()
|
|
|
|
def updateIsocurve():
|
|
global isoLine, iso
|
|
iso.setLevel(isoLine.value())
|
|
|
|
isoLine.sigDragged.connect(updateIsocurve)
|
|
|
|
def imageHoverEvent(event):
|
|
"""Show the position, pixel, and value under the mouse cursor.
|
|
"""
|
|
if event.isExit():
|
|
p1.setTitle("")
|
|
return
|
|
pos = event.pos()
|
|
i, j = pos.y(), pos.x()
|
|
i = int(np.clip(i, 0, data.shape[0] - 1))
|
|
j = int(np.clip(j, 0, data.shape[1] - 1))
|
|
val = data[i, j]
|
|
ppos = img.mapToParent(pos)
|
|
x, y = ppos.x(), ppos.y()
|
|
p1.setTitle("pos: (%0.1f, %0.1f) pixel: (%d, %d) value: %g" % (x, y, i, j, val))
|
|
|
|
# Monkey-patch the image to use our custom hover function.
|
|
# This is generally discouraged (you should subclass ImageItem instead),
|
|
# but it works for a very simple use like this.
|
|
img.hoverEvent = imageHoverEvent
|
|
|
|
if __name__ == '__main__':
|
|
pg.exec()
|