e29f86578f
* Revert behavior change of Point.angle * Propagate Point.angle revert
111 lines
3.3 KiB
Python
111 lines
3.3 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Displays an interactive Koch fractal
|
|
"""
|
|
import initExample ## Add path to library (just for examples; you do not need this)
|
|
|
|
from functools import reduce
|
|
import pyqtgraph as pg
|
|
from pyqtgraph.Qt import QtCore, QtGui
|
|
import numpy as np
|
|
|
|
app = pg.mkQApp("Fractal Example")
|
|
|
|
# Set up UI widgets
|
|
win = pg.QtGui.QWidget()
|
|
win.setWindowTitle('pyqtgraph example: fractal demo')
|
|
layout = pg.QtGui.QGridLayout()
|
|
win.setLayout(layout)
|
|
layout.setContentsMargins(0, 0, 0, 0)
|
|
depthLabel = pg.QtGui.QLabel('fractal depth:')
|
|
layout.addWidget(depthLabel, 0, 0)
|
|
depthSpin = pg.SpinBox(value=5, step=1, bounds=[1, 10], delay=0, int=True)
|
|
depthSpin.resize(100, 20)
|
|
layout.addWidget(depthSpin, 0, 1)
|
|
w = pg.GraphicsLayoutWidget()
|
|
layout.addWidget(w, 1, 0, 1, 2)
|
|
win.show()
|
|
|
|
# Set up graphics
|
|
v = w.addViewBox()
|
|
v.setAspectLocked()
|
|
baseLine = pg.PolyLineROI([[0, 0], [1, 0], [1.5, 1], [2, 0], [3, 0]], pen=(0, 255, 0, 100), movable=False)
|
|
v.addItem(baseLine)
|
|
fc = pg.PlotCurveItem(pen=(255, 255, 255, 200), antialias=True)
|
|
v.addItem(fc)
|
|
v.autoRange()
|
|
|
|
|
|
transformMap = [0, 0, None]
|
|
|
|
|
|
def update():
|
|
# recalculate and redraw the fractal curve
|
|
|
|
depth = depthSpin.value()
|
|
pts = baseLine.getState()['points']
|
|
nbseg = len(pts) - 1
|
|
nseg = nbseg**depth
|
|
|
|
# Get a transformation matrix for each base segment
|
|
trs = []
|
|
v1 = pts[-1] - pts[0]
|
|
l1 = v1.length()
|
|
for i in range(len(pts)-1):
|
|
p1 = pts[i]
|
|
p2 = pts[i+1]
|
|
v2 = p2 - p1
|
|
t = p1 - pts[0]
|
|
r = v2.angle(v1)
|
|
s = v2.length() / l1
|
|
trs.append(pg.SRTTransform({'pos': t, 'scale': (s, s), 'angle': r}))
|
|
|
|
basePts = [np.array(list(pt) + [1]) for pt in baseLine.getState()['points']]
|
|
baseMats = np.dstack([tr.matrix().T for tr in trs]).transpose(2, 0, 1)
|
|
|
|
# Generate an array of matrices to transform base points
|
|
global transformMap
|
|
if transformMap[:2] != [depth, nbseg]:
|
|
# we can cache the transform index to save a little time..
|
|
nseg = nbseg**depth
|
|
matInds = np.empty((depth, nseg), dtype=int)
|
|
for i in range(depth):
|
|
matInds[i] = np.tile(np.repeat(np.arange(nbseg), nbseg**(depth-1-i)), nbseg**i)
|
|
transformMap = [depth, nbseg, matInds]
|
|
|
|
# Each column in matInds contains the indices referring to the base transform
|
|
# matrices that must be multiplied together to generate the final transform
|
|
# for each segment of the fractal
|
|
matInds = transformMap[2]
|
|
|
|
# Collect all matrices needed for generating fractal curve
|
|
mats = baseMats[matInds]
|
|
|
|
# Magic-multiply stacks of matrices together
|
|
def matmul(a, b):
|
|
return np.sum(np.transpose(a,(0,2,1))[..., None] * b[..., None, :], axis=-3)
|
|
mats = reduce(matmul, mats)
|
|
|
|
# Transform base points through matrix array
|
|
pts = np.empty((nseg * nbseg + 1, 2))
|
|
for l in range(len(trs)):
|
|
bp = basePts[l]
|
|
pts[l:-1:len(trs)] = np.dot(mats, bp)[:, :2]
|
|
|
|
# Finish the curve with the last base point
|
|
pts[-1] = basePts[-1][:2]
|
|
|
|
# update fractal curve with new points
|
|
fc.setData(pts[:,0], pts[:,1])
|
|
|
|
|
|
# Update the fractal whenever the base shape or depth has changed
|
|
baseLine.sigRegionChanged.connect(update)
|
|
depthSpin.valueChanged.connect(update)
|
|
|
|
# Initialize
|
|
update()
|
|
|
|
if __name__ == '__main__':
|
|
pg.exec()
|