pyqtgraph/graphicsItems/AxisItem.py
2014-01-24 10:50:50 -05:00

926 lines
36 KiB
Python

from ..Qt import QtGui, QtCore
from ..python2_3 import asUnicode
import numpy as np
from ..Point import Point
from .. import debug as debug
import weakref
from .. import functions as fn
from .. import getConfigOption
from .GraphicsWidget import GraphicsWidget
__all__ = ['AxisItem']
class AxisItem(GraphicsWidget):
"""
GraphicsItem showing a single plot axis with ticks, values, and label.
Can be configured to fit on any side of a plot, and can automatically synchronize its displayed scale with ViewBox items.
Ticks can be extended to draw a grid.
If maxTickLength is negative, ticks point into the plot.
"""
def __init__(self, orientation, pen=None, linkView=None, parent=None, maxTickLength=-5, showValues=True):
"""
============== ===============================================================
**Arguments:**
orientation one of 'left', 'right', 'top', or 'bottom'
maxTickLength (px) maximum length of ticks to draw. Negative values draw
into the plot, positive values draw outward.
linkView (ViewBox) causes the range of values displayed in the axis
to be linked to the visible range of a ViewBox.
showValues (bool) Whether to display values adjacent to ticks
pen (QPen) Pen used when drawing ticks.
============== ===============================================================
"""
GraphicsWidget.__init__(self, parent)
self.label = QtGui.QGraphicsTextItem(self)
self.showValues = showValues
self.picture = None
self.orientation = orientation
if orientation not in ['left', 'right', 'top', 'bottom']:
raise Exception("Orientation argument must be one of 'left', 'right', 'top', or 'bottom'.")
if orientation in ['left', 'right']:
self.label.rotate(-90)
self.style = {
'tickTextOffset': (5, 2), ## (horizontal, vertical) spacing between text and axis
'tickTextWidth': 30, ## space reserved for tick text
'tickTextHeight': 18,
'autoExpandTextSpace': True, ## automatically expand text space if needed
'tickFont': None,
'stopAxisAtTick': (False, False), ## whether axis is drawn to edge of box or to last tick
'textFillLimits': [ ## how much of the axis to fill up with tick text, maximally.
(0, 0.8), ## never fill more than 80% of the axis
(2, 0.6), ## If we already have 2 ticks with text, fill no more than 60% of the axis
(4, 0.4), ## If we already have 4 ticks with text, fill no more than 40% of the axis
(6, 0.2), ## If we already have 6 ticks with text, fill no more than 20% of the axis
]
}
self.textWidth = 30 ## Keeps track of maximum width / height of tick text
self.textHeight = 18
self.labelText = ''
self.labelUnits = ''
self.labelUnitPrefix=''
self.labelStyle = {}
self.logMode = False
self.tickFont = None
self.tickLength = maxTickLength
self._tickLevels = None ## used to override the automatic ticking system with explicit ticks
self.scale = 1.0
self.autoSIPrefix = True
self.autoSIPrefixScale = 1.0
self.setRange(0, 1)
self.setPen(pen)
self._linkedView = None
if linkView is not None:
self.linkToView(linkView)
self.showLabel(False)
self.grid = False
#self.setCacheMode(self.DeviceCoordinateCache)
def close(self):
self.scene().removeItem(self.label)
self.label = None
self.scene().removeItem(self)
def setGrid(self, grid):
"""Set the alpha value for the grid, or False to disable."""
self.grid = grid
self.picture = None
self.prepareGeometryChange()
self.update()
def setLogMode(self, log):
"""
If *log* is True, then ticks are displayed on a logarithmic scale and values
are adjusted accordingly. (This is usually accessed by changing the log mode
of a :func:`PlotItem <pyqtgraph.PlotItem.setLogMode>`)
"""
self.logMode = log
self.picture = None
self.update()
def setTickFont(self, font):
self.tickFont = font
self.picture = None
self.prepareGeometryChange()
## Need to re-allocate space depending on font size?
self.update()
def resizeEvent(self, ev=None):
#s = self.size()
## Set the position of the label
nudge = 5
br = self.label.boundingRect()
p = QtCore.QPointF(0, 0)
if self.orientation == 'left':
p.setY(int(self.size().height()/2 + br.width()/2))
p.setX(-nudge)
#s.setWidth(10)
elif self.orientation == 'right':
#s.setWidth(10)
p.setY(int(self.size().height()/2 + br.width()/2))
p.setX(int(self.size().width()-br.height()+nudge))
elif self.orientation == 'top':
#s.setHeight(10)
p.setY(-nudge)
p.setX(int(self.size().width()/2. - br.width()/2.))
elif self.orientation == 'bottom':
p.setX(int(self.size().width()/2. - br.width()/2.))
#s.setHeight(10)
p.setY(int(self.size().height()-br.height()+nudge))
#self.label.resize(s)
self.label.setPos(p)
self.picture = None
def showLabel(self, show=True):
"""Show/hide the label text for this axis."""
#self.drawLabel = show
self.label.setVisible(show)
if self.orientation in ['left', 'right']:
self.setWidth()
else:
self.setHeight()
if self.autoSIPrefix:
self.updateAutoSIPrefix()
def setLabel(self, text=None, units=None, unitPrefix=None, **args):
"""Set the text displayed adjacent to the axis.
============= =============================================================
Arguments
text The text (excluding units) to display on the label for this
axis.
units The units for this axis. Units should generally be given
without any scaling prefix (eg, 'V' instead of 'mV'). The
scaling prefix will be automatically prepended based on the
range of data displayed.
**args All extra keyword arguments become CSS style options for
the <span> tag which will surround the axis label and units.
============= =============================================================
The final text generated for the label will look like::
<span style="...options...">{text} (prefix{units})</span>
Each extra keyword argument will become a CSS option in the above template.
For example, you can set the font size and color of the label::
labelStyle = {'color': '#FFF', 'font-size': '14pt'}
axis.setLabel('label text', units='V', **labelStyle)
"""
if text is not None:
self.labelText = text
self.showLabel()
if units is not None:
self.labelUnits = units
self.showLabel()
if unitPrefix is not None:
self.labelUnitPrefix = unitPrefix
if len(args) > 0:
self.labelStyle = args
self.label.setHtml(self.labelString())
self._adjustSize()
self.picture = None
self.update()
def labelString(self):
if self.labelUnits == '':
if not self.autoSIPrefix or self.autoSIPrefixScale == 1.0:
units = ''
else:
units = asUnicode('(x%g)') % (1.0/self.autoSIPrefixScale)
else:
#print repr(self.labelUnitPrefix), repr(self.labelUnits)
units = asUnicode('(%s%s)') % (asUnicode(self.labelUnitPrefix), asUnicode(self.labelUnits))
s = asUnicode('%s %s') % (asUnicode(self.labelText), asUnicode(units))
style = ';'.join(['%s: %s' % (k, self.labelStyle[k]) for k in self.labelStyle])
return asUnicode("<span style='%s'>%s</span>") % (style, asUnicode(s))
def _updateMaxTextSize(self, x):
## Informs that the maximum tick size orthogonal to the axis has
## changed; we use this to decide whether the item needs to be resized
## to accomodate.
if self.orientation in ['left', 'right']:
mx = max(self.textWidth, x)
if mx > self.textWidth or mx < self.textWidth-10:
self.textWidth = mx
if self.style['autoExpandTextSpace'] is True:
self.setWidth()
#return True ## size has changed
else:
mx = max(self.textHeight, x)
if mx > self.textHeight or mx < self.textHeight-10:
self.textHeight = mx
if self.style['autoExpandTextSpace'] is True:
self.setHeight()
#return True ## size has changed
def _adjustSize(self):
if self.orientation in ['left', 'right']:
self.setWidth()
else:
self.setHeight()
def setHeight(self, h=None):
"""Set the height of this axis reserved for ticks and tick labels.
The height of the axis label is automatically added."""
if h is None:
if self.style['autoExpandTextSpace'] is True:
h = self.textHeight
else:
h = self.style['tickTextHeight']
h += max(0, self.tickLength) + self.style['tickTextOffset'][1]
if self.label.isVisible():
h += self.label.boundingRect().height() * 0.8
self.setMaximumHeight(h)
self.setMinimumHeight(h)
self.picture = None
def setWidth(self, w=None):
"""Set the width of this axis reserved for ticks and tick labels.
The width of the axis label is automatically added."""
if w is None:
if self.style['autoExpandTextSpace'] is True:
w = self.textWidth
else:
w = self.style['tickTextWidth']
w += max(0, self.tickLength) + self.style['tickTextOffset'][0]
if self.label.isVisible():
w += self.label.boundingRect().height() * 0.8 ## bounding rect is usually an overestimate
self.setMaximumWidth(w)
self.setMinimumWidth(w)
self.picture = None
def pen(self):
if self._pen is None:
return fn.mkPen(getConfigOption('foreground'))
return fn.mkPen(self._pen)
def setPen(self, pen):
"""
Set the pen used for drawing text, axes, ticks, and grid lines.
if pen == None, the default will be used (see :func:`setConfigOption
<pyqtgraph.setConfigOption>`)
"""
self.picture = None
if pen is None:
pen = getConfigOption('foreground')
self._pen = fn.mkPen(pen)
self.labelStyle['color'] = '#' + fn.colorStr(self._pen.color())[:6]
self.setLabel()
self.update()
def setScale(self, scale=None):
"""
Set the value scaling for this axis.
Setting this value causes the axis to draw ticks and tick labels as if
the view coordinate system were scaled. By default, the axis scaling is
1.0.
"""
# Deprecated usage, kept for backward compatibility
if scale is None:
scale = 1.0
self.enableAutoSIPrefix(True)
if scale != self.scale:
self.scale = scale
self.setLabel()
self.picture = None
self.update()
def enableAutoSIPrefix(self, enable=True):
"""
Enable (or disable) automatic SI prefix scaling on this axis.
When enabled, this feature automatically determines the best SI prefix
to prepend to the label units, while ensuring that axis values are scaled
accordingly.
For example, if the axis spans values from -0.1 to 0.1 and has units set
to 'V' then the axis would display values -100 to 100
and the units would appear as 'mV'
This feature is enabled by default, and is only available when a suffix
(unit string) is provided to display on the label.
"""
self.autoSIPrefix = enable
self.updateAutoSIPrefix()
def updateAutoSIPrefix(self):
if self.label.isVisible():
(scale, prefix) = fn.siScale(max(abs(self.range[0]*self.scale), abs(self.range[1]*self.scale)))
if self.labelUnits == '' and prefix in ['k', 'm']: ## If we are not showing units, wait until 1e6 before scaling.
scale = 1.0
prefix = ''
self.setLabel(unitPrefix=prefix)
else:
scale = 1.0
self.autoSIPrefixScale = scale
self.picture = None
self.update()
def setRange(self, mn, mx):
"""Set the range of values displayed by the axis.
Usually this is handled automatically by linking the axis to a ViewBox with :func:`linkToView <pyqtgraph.AxisItem.linkToView>`"""
if any(np.isinf((mn, mx))) or any(np.isnan((mn, mx))):
raise Exception("Not setting range to [%s, %s]" % (str(mn), str(mx)))
self.range = [mn, mx]
if self.autoSIPrefix:
self.updateAutoSIPrefix()
self.picture = None
self.update()
def linkedView(self):
"""Return the ViewBox this axis is linked to"""
if self._linkedView is None:
return None
else:
return self._linkedView()
def linkToView(self, view):
"""Link this axis to a ViewBox, causing its displayed range to match the visible range of the view."""
oldView = self.linkedView()
self._linkedView = weakref.ref(view)
if self.orientation in ['right', 'left']:
if oldView is not None:
oldView.sigYRangeChanged.disconnect(self.linkedViewChanged)
view.sigYRangeChanged.connect(self.linkedViewChanged)
else:
if oldView is not None:
oldView.sigXRangeChanged.disconnect(self.linkedViewChanged)
view.sigXRangeChanged.connect(self.linkedViewChanged)
if oldView is not None:
oldView.sigResized.disconnect(self.linkedViewChanged)
view.sigResized.connect(self.linkedViewChanged)
def linkedViewChanged(self, view, newRange=None):
if self.orientation in ['right', 'left']:
if newRange is None:
newRange = view.viewRange()[1]
if view.yInverted():
self.setRange(*newRange[::-1])
else:
self.setRange(*newRange)
else:
if newRange is None:
newRange = view.viewRange()[0]
self.setRange(*newRange)
def boundingRect(self):
linkedView = self.linkedView()
if linkedView is None or self.grid is False:
rect = self.mapRectFromParent(self.geometry())
## extend rect if ticks go in negative direction
## also extend to account for text that flows past the edges
if self.orientation == 'left':
rect = rect.adjusted(0, -15, -min(0,self.tickLength), 15)
elif self.orientation == 'right':
rect = rect.adjusted(min(0,self.tickLength), -15, 0, 15)
elif self.orientation == 'top':
rect = rect.adjusted(-15, 0, 15, -min(0,self.tickLength))
elif self.orientation == 'bottom':
rect = rect.adjusted(-15, min(0,self.tickLength), 15, 0)
return rect
else:
return self.mapRectFromParent(self.geometry()) | linkedView.mapRectToItem(self, linkedView.boundingRect())
def paint(self, p, opt, widget):
profiler = debug.Profiler()
if self.picture is None:
try:
picture = QtGui.QPicture()
painter = QtGui.QPainter(picture)
specs = self.generateDrawSpecs(painter)
profiler('generate specs')
if specs is not None:
self.drawPicture(painter, *specs)
profiler('draw picture')
finally:
painter.end()
self.picture = picture
#p.setRenderHint(p.Antialiasing, False) ## Sometimes we get a segfault here ???
#p.setRenderHint(p.TextAntialiasing, True)
self.picture.play(p)
def setTicks(self, ticks):
"""Explicitly determine which ticks to display.
This overrides the behavior specified by tickSpacing(), tickValues(), and tickStrings()
The format for *ticks* looks like::
[
[ (majorTickValue1, majorTickString1), (majorTickValue2, majorTickString2), ... ],
[ (minorTickValue1, minorTickString1), (minorTickValue2, minorTickString2), ... ],
...
]
If *ticks* is None, then the default tick system will be used instead.
"""
self._tickLevels = ticks
self.picture = None
self.update()
def tickSpacing(self, minVal, maxVal, size):
"""Return values describing the desired spacing and offset of ticks.
This method is called whenever the axis needs to be redrawn and is a
good method to override in subclasses that require control over tick locations.
The return value must be a list of tuples, one for each set of ticks::
[
(major tick spacing, offset),
(minor tick spacing, offset),
(sub-minor tick spacing, offset),
...
]
"""
dif = abs(maxVal - minVal)
if dif == 0:
return []
## decide optimal minor tick spacing in pixels (this is just aesthetics)
optimalTickCount = max(2., np.log(size))
## optimal minor tick spacing
optimalSpacing = dif / optimalTickCount
## the largest power-of-10 spacing which is smaller than optimal
p10unit = 10 ** np.floor(np.log10(optimalSpacing))
## Determine major/minor tick spacings which flank the optimal spacing.
intervals = np.array([1., 2., 10., 20., 100.]) * p10unit
minorIndex = 0
while intervals[minorIndex+1] <= optimalSpacing:
minorIndex += 1
levels = [
(intervals[minorIndex+2], 0),
(intervals[minorIndex+1], 0),
#(intervals[minorIndex], 0) ## Pretty, but eats up CPU
]
## decide whether to include the last level of ticks
minSpacing = min(size / 20., 30.)
maxTickCount = size / minSpacing
if dif / intervals[minorIndex] <= maxTickCount:
levels.append((intervals[minorIndex], 0))
return levels
##### This does not work -- switching between 2/5 confuses the automatic text-level-selection
### Determine major/minor tick spacings which flank the optimal spacing.
#intervals = np.array([1., 2., 5., 10., 20., 50., 100.]) * p10unit
#minorIndex = 0
#while intervals[minorIndex+1] <= optimalSpacing:
#minorIndex += 1
### make sure we never see 5 and 2 at the same time
#intIndexes = [
#[0,1,3],
#[0,2,3],
#[2,3,4],
#[3,4,6],
#[3,5,6],
#][minorIndex]
#return [
#(intervals[intIndexes[2]], 0),
#(intervals[intIndexes[1]], 0),
#(intervals[intIndexes[0]], 0)
#]
def tickValues(self, minVal, maxVal, size):
"""
Return the values and spacing of ticks to draw::
[
(spacing, [major ticks]),
(spacing, [minor ticks]),
...
]
By default, this method calls tickSpacing to determine the correct tick locations.
This is a good method to override in subclasses.
"""
minVal, maxVal = sorted((minVal, maxVal))
minVal *= self.scale
maxVal *= self.scale
#size *= self.scale
ticks = []
tickLevels = self.tickSpacing(minVal, maxVal, size)
allValues = np.array([])
for i in range(len(tickLevels)):
spacing, offset = tickLevels[i]
## determine starting tick
start = (np.ceil((minVal-offset) / spacing) * spacing) + offset
## determine number of ticks
num = int((maxVal-start) / spacing) + 1
values = (np.arange(num) * spacing + start) / self.scale
## remove any ticks that were present in higher levels
## we assume here that if the difference between a tick value and a previously seen tick value
## is less than spacing/100, then they are 'equal' and we can ignore the new tick.
values = list(filter(lambda x: all(np.abs(allValues-x) > spacing*0.01), values) )
allValues = np.concatenate([allValues, values])
ticks.append((spacing/self.scale, values))
if self.logMode:
return self.logTickValues(minVal, maxVal, size, ticks)
#nticks = []
#for t in ticks:
#nvals = []
#for v in t[1]:
#nvals.append(v/self.scale)
#nticks.append((t[0]/self.scale,nvals))
#ticks = nticks
return ticks
def logTickValues(self, minVal, maxVal, size, stdTicks):
## start with the tick spacing given by tickValues().
## Any level whose spacing is < 1 needs to be converted to log scale
ticks = []
for (spacing, t) in stdTicks:
if spacing >= 1.0:
ticks.append((spacing, t))
if len(ticks) < 3:
v1 = int(np.floor(minVal))
v2 = int(np.ceil(maxVal))
#major = list(range(v1+1, v2))
minor = []
for v in range(v1, v2):
minor.extend(v + np.log10(np.arange(1, 10)))
minor = [x for x in minor if x>minVal and x<maxVal]
ticks.append((None, minor))
return ticks
def tickStrings(self, values, scale, spacing):
"""Return the strings that should be placed next to ticks. This method is called
when redrawing the axis and is a good method to override in subclasses.
The method is called with a list of tick values, a scaling factor (see below), and the
spacing between ticks (this is required since, in some instances, there may be only
one tick and thus no other way to determine the tick spacing)
The scale argument is used when the axis label is displaying units which may have an SI scaling prefix.
When determining the text to display, use value*scale to correctly account for this prefix.
For example, if the axis label's units are set to 'V', then a tick value of 0.001 might
be accompanied by a scale value of 1000. This indicates that the label is displaying 'mV', and
thus the tick should display 0.001 * 1000 = 1.
"""
if self.logMode:
return self.logTickStrings(values, scale, spacing)
places = max(0, np.ceil(-np.log10(spacing*scale)))
strings = []
for v in values:
vs = v * scale
if abs(vs) < .001 or abs(vs) >= 10000:
vstr = "%g" % vs
else:
vstr = ("%%0.%df" % places) % vs
strings.append(vstr)
return strings
def logTickStrings(self, values, scale, spacing):
return ["%0.1g"%x for x in 10 ** np.array(values).astype(float)]
def generateDrawSpecs(self, p):
"""
Calls tickValues() and tickStrings to determine where and how ticks should
be drawn, then generates from this a set of drawing commands to be
interpreted by drawPicture().
"""
profiler = debug.Profiler()
#bounds = self.boundingRect()
bounds = self.mapRectFromParent(self.geometry())
linkedView = self.linkedView()
if linkedView is None or self.grid is False:
tickBounds = bounds
else:
tickBounds = linkedView.mapRectToItem(self, linkedView.boundingRect())
if self.orientation == 'left':
span = (bounds.topRight(), bounds.bottomRight())
tickStart = tickBounds.right()
tickStop = bounds.right()
tickDir = -1
axis = 0
elif self.orientation == 'right':
span = (bounds.topLeft(), bounds.bottomLeft())
tickStart = tickBounds.left()
tickStop = bounds.left()
tickDir = 1
axis = 0
elif self.orientation == 'top':
span = (bounds.bottomLeft(), bounds.bottomRight())
tickStart = tickBounds.bottom()
tickStop = bounds.bottom()
tickDir = -1
axis = 1
elif self.orientation == 'bottom':
span = (bounds.topLeft(), bounds.topRight())
tickStart = tickBounds.top()
tickStop = bounds.top()
tickDir = 1
axis = 1
#print tickStart, tickStop, span
## determine size of this item in pixels
points = list(map(self.mapToDevice, span))
if None in points:
return
lengthInPixels = Point(points[1] - points[0]).length()
if lengthInPixels == 0:
return
if self._tickLevels is None:
tickLevels = self.tickValues(self.range[0], self.range[1], lengthInPixels)
tickStrings = None
else:
## parse self.tickLevels into the formats returned by tickLevels() and tickStrings()
tickLevels = []
tickStrings = []
for level in self._tickLevels:
values = []
strings = []
tickLevels.append((None, values))
tickStrings.append(strings)
for val, strn in level:
values.append(val)
strings.append(strn)
textLevel = 1 ## draw text at this scale level
## determine mapping between tick values and local coordinates
dif = self.range[1] - self.range[0]
if dif == 0:
xscale = 1
offset = 0
else:
if axis == 0:
xScale = -bounds.height() / dif
offset = self.range[0] * xScale - bounds.height()
else:
xScale = bounds.width() / dif
offset = self.range[0] * xScale
xRange = [x * xScale - offset for x in self.range]
xMin = min(xRange)
xMax = max(xRange)
profiler('init')
tickPositions = [] # remembers positions of previously drawn ticks
## draw ticks
## (to improve performance, we do not interleave line and text drawing, since this causes unnecessary pipeline switching)
## draw three different intervals, long ticks first
tickSpecs = []
for i in range(len(tickLevels)):
tickPositions.append([])
ticks = tickLevels[i][1]
## length of tick
tickLength = self.tickLength / ((i*0.5)+1.0)
lineAlpha = 255 / (i+1)
if self.grid is not False:
lineAlpha *= self.grid/255. * np.clip((0.05 * lengthInPixels / (len(ticks)+1)), 0., 1.)
for v in ticks:
## determine actual position to draw this tick
x = (v * xScale) - offset
if x < xMin or x > xMax: ## last check to make sure no out-of-bounds ticks are drawn
tickPositions[i].append(None)
continue
tickPositions[i].append(x)
p1 = [x, x]
p2 = [x, x]
p1[axis] = tickStart
p2[axis] = tickStop
if self.grid is False:
p2[axis] += tickLength*tickDir
tickPen = self.pen()
color = tickPen.color()
color.setAlpha(lineAlpha)
tickPen.setColor(color)
tickSpecs.append((tickPen, Point(p1), Point(p2)))
profiler('compute ticks')
## This is where the long axis line should be drawn
if self.style['stopAxisAtTick'][0] is True:
stop = max(span[0].y(), min(map(min, tickPositions)))
if axis == 0:
span[0].setY(stop)
else:
span[0].setX(stop)
if self.style['stopAxisAtTick'][1] is True:
stop = min(span[1].y(), max(map(max, tickPositions)))
if axis == 0:
span[1].setY(stop)
else:
span[1].setX(stop)
axisSpec = (self.pen(), span[0], span[1])
textOffset = self.style['tickTextOffset'][axis] ## spacing between axis and text
#if self.style['autoExpandTextSpace'] is True:
#textWidth = self.textWidth
#textHeight = self.textHeight
#else:
#textWidth = self.style['tickTextWidth'] ## space allocated for horizontal text
#textHeight = self.style['tickTextHeight'] ## space allocated for horizontal text
textSize2 = 0
textRects = []
textSpecs = [] ## list of draw
textSize2 = 0
for i in range(len(tickLevels)):
## Get the list of strings to display for this level
if tickStrings is None:
spacing, values = tickLevels[i]
strings = self.tickStrings(values, self.autoSIPrefixScale * self.scale, spacing)
else:
strings = tickStrings[i]
if len(strings) == 0:
continue
## ignore strings belonging to ticks that were previously ignored
for j in range(len(strings)):
if tickPositions[i][j] is None:
strings[j] = None
## Measure density of text; decide whether to draw this level
rects = []
for s in strings:
if s is None:
rects.append(None)
else:
br = p.boundingRect(QtCore.QRectF(0, 0, 100, 100), QtCore.Qt.AlignCenter, asUnicode(s))
## boundingRect is usually just a bit too large
## (but this probably depends on per-font metrics?)
br.setHeight(br.height() * 0.8)
rects.append(br)
textRects.append(rects[-1])
if i > 0: ## always draw top level
## measure all text, make sure there's enough room
if axis == 0:
textSize = np.sum([r.height() for r in textRects])
textSize2 = np.max([r.width() for r in textRects])
else:
textSize = np.sum([r.width() for r in textRects])
textSize2 = np.max([r.height() for r in textRects])
## If the strings are too crowded, stop drawing text now.
## We use three different crowding limits based on the number
## of texts drawn so far.
textFillRatio = float(textSize) / lengthInPixels
finished = False
for nTexts, limit in self.style['textFillLimits']:
if len(textSpecs) >= nTexts and textFillRatio >= limit:
finished = True
break
if finished:
break
#spacing, values = tickLevels[best]
#strings = self.tickStrings(values, self.scale, spacing)
for j in range(len(strings)):
vstr = strings[j]
if vstr is None: ## this tick was ignored because it is out of bounds
continue
vstr = asUnicode(vstr)
x = tickPositions[i][j]
#textRect = p.boundingRect(QtCore.QRectF(0, 0, 100, 100), QtCore.Qt.AlignCenter, vstr)
textRect = rects[j]
height = textRect.height()
width = textRect.width()
#self.textHeight = height
offset = max(0,self.tickLength) + textOffset
if self.orientation == 'left':
textFlags = QtCore.Qt.TextDontClip|QtCore.Qt.AlignRight|QtCore.Qt.AlignVCenter
rect = QtCore.QRectF(tickStop-offset-width, x-(height/2), width, height)
elif self.orientation == 'right':
textFlags = QtCore.Qt.TextDontClip|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter
rect = QtCore.QRectF(tickStop+offset, x-(height/2), width, height)
elif self.orientation == 'top':
textFlags = QtCore.Qt.TextDontClip|QtCore.Qt.AlignCenter|QtCore.Qt.AlignBottom
rect = QtCore.QRectF(x-width/2., tickStop-offset-height, width, height)
elif self.orientation == 'bottom':
textFlags = QtCore.Qt.TextDontClip|QtCore.Qt.AlignCenter|QtCore.Qt.AlignTop
rect = QtCore.QRectF(x-width/2., tickStop+offset, width, height)
#p.setPen(self.pen())
#p.drawText(rect, textFlags, vstr)
textSpecs.append((rect, textFlags, vstr))
profiler('compute text')
## update max text size if needed.
self._updateMaxTextSize(textSize2)
return (axisSpec, tickSpecs, textSpecs)
def drawPicture(self, p, axisSpec, tickSpecs, textSpecs):
profiler = debug.Profiler()
p.setRenderHint(p.Antialiasing, False)
p.setRenderHint(p.TextAntialiasing, True)
## draw long line along axis
pen, p1, p2 = axisSpec
p.setPen(pen)
p.drawLine(p1, p2)
p.translate(0.5,0) ## resolves some damn pixel ambiguity
## draw ticks
for pen, p1, p2 in tickSpecs:
p.setPen(pen)
p.drawLine(p1, p2)
profiler('draw ticks')
## Draw all text
if self.tickFont is not None:
p.setFont(self.tickFont)
p.setPen(self.pen())
for rect, flags, text in textSpecs:
p.drawText(rect, flags, text)
#p.drawRect(rect)
profiler('draw text')
def show(self):
if self.orientation in ['left', 'right']:
self.setWidth()
else:
self.setHeight()
GraphicsWidget.show(self)
def hide(self):
if self.orientation in ['left', 'right']:
self.setWidth(0)
else:
self.setHeight(0)
GraphicsWidget.hide(self)
def wheelEvent(self, ev):
if self.linkedView() is None:
return
if self.orientation in ['left', 'right']:
self.linkedView().wheelEvent(ev, axis=1)
else:
self.linkedView().wheelEvent(ev, axis=0)
ev.accept()
def mouseDragEvent(self, event):
if self.linkedView() is None:
return
if self.orientation in ['left', 'right']:
return self.linkedView().mouseDragEvent(event, axis=1)
else:
return self.linkedView().mouseDragEvent(event, axis=0)
def mouseClickEvent(self, event):
if self.linkedView() is None:
return
return self.linkedView().mouseClickEvent(event)