pyqtgraph/pyqtgraph/tests/test_functions.py
2021-02-03 17:14:06 -08:00

453 lines
16 KiB
Python

# -*- coding: utf-8 -*-
import pyqtgraph as pg
import numpy as np
import sys
from copy import deepcopy
from collections import OrderedDict
from numpy.testing import assert_array_almost_equal, assert_almost_equal
import pytest
np.random.seed(12345)
def testSolve3D():
p1 = np.array([[0,0,0,1],
[1,0,0,1],
[0,1,0,1],
[0,0,1,1]], dtype=float)
# transform points through random matrix
tr = np.random.normal(size=(4, 4))
tr[3] = (0,0,0,1)
p2 = np.dot(tr, p1.T).T[:,:3]
# solve to see if we can recover the transformation matrix.
tr2 = pg.solve3DTransform(p1, p2)
assert_array_almost_equal(tr[:3], tr2[:3])
def test_interpolateArray_order0():
check_interpolateArray(order=0)
def test_interpolateArray_order1():
check_interpolateArray(order=1)
def check_interpolateArray(order):
def interpolateArray(data, x):
result = pg.interpolateArray(data, x, order=order)
assert result.shape == x.shape[:-1] + data.shape[x.shape[-1]:]
return result
data = np.array([[ 1., 2., 4. ],
[ 10., 20., 40. ],
[ 100., 200., 400.]])
# test various x shapes
interpolateArray(data, np.ones((1,)))
interpolateArray(data, np.ones((2,)))
interpolateArray(data, np.ones((1, 1)))
interpolateArray(data, np.ones((1, 2)))
interpolateArray(data, np.ones((5, 1)))
interpolateArray(data, np.ones((5, 2)))
interpolateArray(data, np.ones((5, 5, 1)))
interpolateArray(data, np.ones((5, 5, 2)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((3,)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((1, 3,)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((5, 5, 3,)))
x = np.array([[ 0.3, 0.6],
[ 1. , 1. ],
[ 0.501, 1. ], # NOTE: testing at exactly 0.5 can yield different results from map_coordinates
[ 0.501, 2.501], # due to differences in rounding
[ 10. , 10. ]])
result = interpolateArray(data, x)
# make sure results match ndimage.map_coordinates
import scipy.ndimage
spresult = scipy.ndimage.map_coordinates(data, x.T, order=order)
#spresult = np.array([ 5.92, 20. , 11. , 0. , 0. ]) # generated with the above line
assert_array_almost_equal(result, spresult)
# test mapping when x.shape[-1] < data.ndim
x = np.array([[ 0.3, 0],
[ 0.3, 1],
[ 0.3, 2]])
r1 = interpolateArray(data, x)
x = np.array([0.3]) # should broadcast across axis 1
r2 = interpolateArray(data, x)
assert_array_almost_equal(r1, r2)
# test mapping 2D array of locations
x = np.array([[[0.501, 0.501], [0.501, 1.0], [0.501, 1.501]],
[[1.501, 0.501], [1.501, 1.0], [1.501, 1.501]]])
r1 = interpolateArray(data, x)
r2 = scipy.ndimage.map_coordinates(data, x.transpose(2,0,1), order=order)
#r2 = np.array([[ 8.25, 11. , 16.5 ], # generated with the above line
#[ 82.5 , 110. , 165. ]])
assert_array_almost_equal(r1, r2)
def test_subArray():
a = np.array([0, 0, 111, 112, 113, 0, 121, 122, 123, 0, 0, 0, 211, 212, 213, 0, 221, 222, 223, 0, 0, 0, 0])
b = pg.subArray(a, offset=2, shape=(2,2,3), stride=(10,4,1))
c = np.array([[[111,112,113], [121,122,123]], [[211,212,213], [221,222,223]]])
assert np.all(b == c)
# operate over first axis; broadcast over the rest
aa = np.vstack([a, a/100.]).T
cc = np.empty(c.shape + (2,))
cc[..., 0] = c
cc[..., 1] = c / 100.
bb = pg.subArray(aa, offset=2, shape=(2,2,3), stride=(10,4,1))
assert np.all(bb == cc)
def test_subArray():
a = np.array([0, 0, 111, 112, 113, 0, 121, 122, 123, 0, 0, 0, 211, 212, 213, 0, 221, 222, 223, 0, 0, 0, 0])
b = pg.subArray(a, offset=2, shape=(2,2,3), stride=(10,4,1))
c = np.array([[[111,112,113], [121,122,123]], [[211,212,213], [221,222,223]]])
assert np.all(b == c)
# operate over first axis; broadcast over the rest
aa = np.vstack([a, a/100.]).T
cc = np.empty(c.shape + (2,))
cc[..., 0] = c
cc[..., 1] = c / 100.
bb = pg.subArray(aa, offset=2, shape=(2,2,3), stride=(10,4,1))
assert np.all(bb == cc)
def test_rescaleData():
dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
for dtype1 in dtypes:
for dtype2 in dtypes:
data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
if dtype2.kind in 'iu':
lim = np.iinfo(dtype2)
lim = lim.min, lim.max
else:
lim = (-np.inf, np.inf)
s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
s2 = pg.rescaleData(data, scale, offset, dtype2)
assert s1.dtype == s2.dtype
if dtype2.kind in 'iu':
assert np.all(s1 == s2)
else:
assert np.allclose(s1, s2)
def test_makeARGB():
# Many parameters to test here:
# * data dtype (ubyte, uint16, float, others)
# * data ndim (2 or 3)
# * levels (None, 1D, or 2D)
# * lut dtype
# * lut size
# * lut ndim (1 or 2)
# * useRGBA argument
# Need to check that all input values map to the correct output values, especially
# at and beyond the edges of the level range.
def checkArrays(a, b):
# because py.test output is difficult to read for arrays
if not np.all(a == b):
comp = []
for i in range(a.shape[0]):
if a.shape[1] > 1:
comp.append('[')
for j in range(a.shape[1]):
m = a[i,j] == b[i,j]
comp.append('%d,%d %s %s %s%s' %
(i, j, str(a[i,j]).ljust(15), str(b[i,j]).ljust(15),
m, ' ********' if not np.all(m) else ''))
if a.shape[1] > 1:
comp.append(']')
raise Exception("arrays do not match:\n%s" % '\n'.join(comp))
def checkImage(img, check, alpha, alphaCheck):
assert img.dtype == np.ubyte
assert alpha is alphaCheck
if alpha is False:
checkArrays(img[..., 3], 255)
if np.isscalar(check) or check.ndim == 3:
checkArrays(img[..., :3], check)
elif check.ndim == 2:
checkArrays(img[..., :3], check[..., np.newaxis])
elif check.ndim == 1:
checkArrays(img[..., :3], check[..., np.newaxis, np.newaxis])
else:
raise Exception('invalid check array ndim')
# uint8 data tests
im1 = np.arange(256).astype('ubyte').reshape(256, 1)
im2, alpha = pg.makeARGB(im1, levels=(0, 255))
checkImage(im2, im1, alpha, False)
im3, alpha = pg.makeARGB(im1, levels=(0.0, 255.0))
checkImage(im3, im1, alpha, False)
im4, alpha = pg.makeARGB(im1, levels=(255, 0))
checkImage(im4, 255-im1, alpha, False)
im5, alpha = pg.makeARGB(np.concatenate([im1]*3, axis=1), levels=[(0, 255), (0.0, 255.0), (255, 0)])
checkImage(im5, np.concatenate([im1, im1, 255-im1], axis=1), alpha, False)
im2, alpha = pg.makeARGB(im1, levels=(128,383))
checkImage(im2[:128], 0, alpha, False)
checkImage(im2[128:], im1[:128], alpha, False)
# uint8 data + uint8 LUT
lut = np.arange(256)[::-1].astype(np.uint8)
im2, alpha = pg.makeARGB(im1, lut=lut)
checkImage(im2, lut, alpha, False)
# lut larger than maxint
lut = np.arange(511).astype(np.uint8)
im2, alpha = pg.makeARGB(im1, lut=lut)
checkImage(im2, lut[::2], alpha, False)
# lut smaller than maxint
lut = np.arange(128).astype(np.uint8)
im2, alpha = pg.makeARGB(im1, lut=lut)
checkImage(im2, np.linspace(0, 127.5, 256, dtype='ubyte'), alpha, False)
# lut + levels
lut = np.arange(256)[::-1].astype(np.uint8)
im2, alpha = pg.makeARGB(im1, lut=lut, levels=[-128, 384])
checkImage(im2, np.linspace(191.5, 64.5, 256, dtype='ubyte'), alpha, False)
im2, alpha = pg.makeARGB(im1, lut=lut, levels=[64, 192])
checkImage(im2, np.clip(np.linspace(384.5, -127.5, 256), 0, 255).astype('ubyte'), alpha, False)
# uint8 data + uint16 LUT
lut = np.arange(4096)[::-1].astype(np.uint16) // 16
im2, alpha = pg.makeARGB(im1, lut=lut)
checkImage(im2, np.arange(256)[::-1].astype('ubyte'), alpha, False)
# uint8 data + float LUT
lut = np.linspace(10., 137., 256)
im2, alpha = pg.makeARGB(im1, lut=lut)
checkImage(im2, lut.astype('ubyte'), alpha, False)
# uint8 data + 2D LUT
lut = np.zeros((256, 3), dtype='ubyte')
lut[:,0] = np.arange(256)
lut[:,1] = np.arange(256)[::-1]
lut[:,2] = 7
im2, alpha = pg.makeARGB(im1, lut=lut)
checkImage(im2, lut[:,None,::-1], alpha, False)
# check useRGBA
im2, alpha = pg.makeARGB(im1, lut=lut, useRGBA=True)
checkImage(im2, lut[:,None,:], alpha, False)
# uint16 data tests
im1 = np.arange(0, 2**16, 256).astype('uint16')[:, None]
im2, alpha = pg.makeARGB(im1, levels=(512, 2**16))
checkImage(im2, np.clip(np.linspace(-2, 253, 256), 0, 255).astype('ubyte'), alpha, False)
lut = (np.arange(512, 2**16)[::-1] // 256).astype('ubyte')
im2, alpha = pg.makeARGB(im1, lut=lut, levels=(512, 2**16-256))
checkImage(im2, np.clip(np.linspace(257, 2, 256), 0, 255).astype('ubyte'), alpha, False)
lut = np.zeros(2**16, dtype='ubyte')
lut[1000:1256] = np.arange(256)
lut[1256:] = 255
im1 = np.arange(1000, 1256).astype('uint16')[:, None]
im2, alpha = pg.makeARGB(im1, lut=lut)
checkImage(im2, np.arange(256).astype('ubyte'), alpha, False)
# float data tests
im1 = np.linspace(1.0, 17.0, 256)[:, None]
im2, alpha = pg.makeARGB(im1, levels=(5.0, 13.0))
checkImage(im2, np.clip(np.linspace(-128, 383, 256), 0, 255).astype('ubyte'), alpha, False)
lut = (np.arange(1280)[::-1] // 10).astype('ubyte')
im2, alpha = pg.makeARGB(im1, lut=lut, levels=(1, 17))
checkImage(im2, np.linspace(127.5, 0, 256).astype('ubyte'), alpha, False)
# nans in image
# 2d input image, one pixel is nan
im1 = np.ones((10, 12))
im1[3, 5] = np.nan
im2, alpha = pg.makeARGB(im1, levels=(0, 1))
assert alpha
assert im2[3, 5, 3] == 0 # nan pixel is transparent
assert im2[0, 0, 3] == 255 # doesn't affect other pixels
# 3d RGB input image, any color channel of a pixel is nan
im1 = np.ones((10, 12, 3))
im1[3, 5, 1] = np.nan
im2, alpha = pg.makeARGB(im1, levels=(0, 1))
assert alpha
assert im2[3, 5, 3] == 0 # nan pixel is transparent
assert im2[0, 0, 3] == 255 # doesn't affect other pixels
# 3d RGBA input image, any color channel of a pixel is nan
im1 = np.ones((10, 12, 4))
im1[3, 5, 1] = np.nan
im2, alpha = pg.makeARGB(im1, levels=(0, 1), useRGBA=True)
assert alpha
assert im2[3, 5, 3] == 0 # nan pixel is transparent
# test sanity checks
class AssertExc(object):
def __init__(self, exc=Exception):
self.exc = exc
def __enter__(self):
return self
def __exit__(self, *args):
assert args[0] is self.exc, "Should have raised %s (got %s)" % (self.exc, args[0])
return True
with AssertExc(TypeError): # invalid image shape
pg.makeARGB(np.zeros((2,), dtype='float'))
with AssertExc(TypeError): # invalid image shape
pg.makeARGB(np.zeros((2,2,7), dtype='float'))
with AssertExc(): # float images require levels arg
pg.makeARGB(np.zeros((2,2), dtype='float'))
with AssertExc(): # bad levels arg
pg.makeARGB(np.zeros((2,2), dtype='float'), levels=[1])
with AssertExc(): # bad levels arg
pg.makeARGB(np.zeros((2,2), dtype='float'), levels=[1,2,3])
with AssertExc(): # can't mix 3-channel levels and LUT
pg.makeARGB(np.zeros((2,2)), lut=np.zeros((10,3), dtype='ubyte'), levels=[(0,1)]*3)
with AssertExc(): # multichannel levels must have same number of channels as image
pg.makeARGB(np.zeros((2,2,3), dtype='float'), levels=[(1,2)]*4)
with AssertExc(): # 3d levels not allowed
pg.makeARGB(np.zeros((2,2,3), dtype='float'), levels=np.zeros([3, 2, 2]))
def test_eq():
eq = pg.functions.eq
zeros = [0, 0.0, np.float(0), np.int(0)]
if sys.version[0] < '3':
zeros.append(long(0))
for i,x in enumerate(zeros):
for y in zeros[i:]:
assert eq(x, y)
assert eq(y, x)
assert eq(np.nan, np.nan)
# test
class NotEq(object):
def __eq__(self, x):
return False
noteq = NotEq()
assert eq(noteq, noteq) # passes because they are the same object
assert not eq(noteq, NotEq())
# Should be able to test for equivalence even if the test raises certain
# exceptions
class NoEq(object):
def __init__(self, err):
self.err = err
def __eq__(self, x):
raise self.err
noeq1 = NoEq(AttributeError())
noeq2 = NoEq(ValueError())
noeq3 = NoEq(Exception())
assert eq(noeq1, noeq1)
assert not eq(noeq1, noeq2)
assert not eq(noeq2, noeq1)
with pytest.raises(Exception):
eq(noeq3, noeq2)
# test array equivalence
# note that numpy has a weird behavior here--np.all() always returns True
# if one of the arrays has size=0; eq() will only return True if both arrays
# have the same shape.
a1 = np.zeros((10, 20)).astype('float')
a2 = a1 + 1
a3 = a2.astype('int')
a4 = np.empty((0, 20))
assert not eq(a1, a2) # same shape/dtype, different values
assert not eq(a1, a3) # same shape, different dtype and values
assert not eq(a1, a4) # different shape (note: np.all gives True if one array has size 0)
assert not eq(a2, a3) # same values, but different dtype
assert not eq(a2, a4) # different shape
assert not eq(a3, a4) # different shape and dtype
assert eq(a4, a4.copy())
assert not eq(a4, a4.T)
# test containers
assert not eq({'a': 1}, {'a': 1, 'b': 2})
assert not eq({'a': 1}, {'a': 2})
d1 = {'x': 1, 'y': np.nan, 3: ['a', np.nan, a3, 7, 2.3], 4: a4}
d2 = deepcopy(d1)
assert eq(d1, d2)
d1_ordered = OrderedDict(d1)
d2_ordered = deepcopy(d1_ordered)
assert eq(d1_ordered, d2_ordered)
assert not eq(d1_ordered, d2)
items = list(d1.items())
assert not eq(OrderedDict(items), OrderedDict(reversed(items)))
assert not eq([1,2,3], [1,2,3,4])
l1 = [d1, np.inf, -np.inf, np.nan]
l2 = deepcopy(l1)
t1 = tuple(l1)
t2 = tuple(l2)
assert eq(l1, l2)
assert eq(t1, t2)
assert eq(set(range(10)), set(range(10)))
assert not eq(set(range(10)), set(range(9)))
@pytest.mark.parametrize("s,suffix,expected", [
# usual cases
("100 uV", "V", ("100", "u", "V")),
("100 µV", "V", ("100", "µ", "V")),
("4.2 nV", None, ("4.2", "n", "V")),
("1.2 m", "m", ("1.2", "", "m")),
("1.2 m", None, ("1.2", "", "m")),
("5.0e9", None, ("5.0e9", "", "")),
("2 units", "units", ("2", "", "units")),
# siPrefix with explicit empty suffix
("1.2 m", "", ("1.2", "m", "")),
("5.0e-9 M", "", ("5.0e-9", "M", "")),
# weirder cases that should return the reasonable thing
("4.2 nV", "nV", ("4.2", "", "nV")),
("4.2 nV", "", ("4.2", "n", "")),
("1.2 j", "", ("1.2", "", "")),
("1.2 j", None, ("1.2", "", "j")),
# expected error cases
("100 uV", "v", ValueError),
])
def test_siParse(s, suffix, expected):
if isinstance(expected, tuple):
assert pg.siParse(s, suffix=suffix) == expected
else:
with pytest.raises(expected):
pg.siParse(s, suffix=suffix)