lyx_mirror/src/ColorHandler.C

230 lines
6.2 KiB
C++
Raw Normal View History

// -*- C++ -*-
/* This file is part of
* ======================================================
*
* LyX, The Document Processor
*
* Copyright 1998-2000 The LyX Team
*
*======================================================*/
#include <config.h>
#ifdef __GNUG__
#pragma implementation
#endif
#include <cmath>
#include FORMS_H_LOCATION
#include "debug.h"
#include "ColorHandler.h"
#include "LColor.h"
#include "gettext.h"
using std::endl;
LyXColorHandler::LyXColorHandler()
{
display = fl_get_display();
drawable = XCreatePixmap(display, fl_root, 10, 10,
fl_get_visual_depth());
colormap = fl_state[fl_get_vclass()].colormap;
// Clear the GC cache
for (int i = 0; i <= LColor::ignore; ++i) {
colorGCcache[i] = 0;
}
}
LyXColorHandler::~LyXColorHandler()
{
// Release all the registered GCs
for (int i = 0; i <= LColor::ignore; ++i) {
if (colorGCcache[i] != 0) {
XFreeGC(display, colorGCcache[i]);
}
}
// Iterate over the line cache and Free the GCs
for (LineGCCache::iterator lit = lineGCcache.begin();
lit != lineGCcache.end(); ++lit) {
XFreeGC(display, (*lit).second);
}
}
unsigned long LyXColorHandler::colorPixel(LColor::color c)
{
XGCValues val;
XGetGCValues(display, getGCForeground(c), GCForeground, &val);
return val.foreground;
}
// Gets GC according to color
// Uses caching
GC LyXColorHandler::getGCForeground(LColor::color c)
{
//if (lyxerr.debugging()) {
// lyxerr << "Painter drawable: " << drawable() << endl;
//}
if (colorGCcache[c] != 0) return colorGCcache[c];
XColor xcol, ccol;
string s = lcolor.getX11Name(c);
XGCValues val;
// Look up the RGB values for the color, and an approximate
// color that we can hope to get on this display.
if (XLookupColor(display, colormap, s.c_str(), &xcol, &ccol) == 0) {
lyxerr << _("LyX: Unknown X11 color ") << s
<< _(" for ") << lcolor.getGUIName(c) << '\n'
<< _(" Using black instead, sorry!.") << endl;
unsigned long bla = BlackPixel(display,
DefaultScreen(display));
val.foreground = bla;
// Try the exact RGB values first, then the approximate.
} else if (XAllocColor(display, colormap, &xcol) != 0) {
if (lyxerr.debugging()) {
lyxerr << _("LyX: X11 color ") << s
<< _(" allocated for ")
<< lcolor.getGUIName(c) << endl;
}
val.foreground = xcol.pixel;
} else if (XAllocColor(display, colormap, &ccol)) {
lyxerr << _("LyX: Using approximated X11 color ") << s
<< _(" allocated for ")
<< lcolor.getGUIName(c) << endl;
val.foreground = xcol.pixel;
} else {
// Here we are traversing the current colormap to find
// the color closest to the one we want.
Visual * vi = DefaultVisual(display, DefaultScreen(display));
XColor * cmap = new XColor[vi->map_entries];
for (int i = 0; i < vi->map_entries; ++i) {
cmap[i].pixel = i;
}
XQueryColors(display, colormap, cmap, vi->map_entries);
// Walk through the cmap and look for close colors.
int closest_pixel = 0;
double closest_distance = 1e20; // we want to minimize this
double distance = 0;
for (int t = 0; t < vi->map_entries; ++t) {
// The Euclidean distance between two points in
// a three-dimensional space, the RGB color-cube,
// is used as the distance measurement between two
// colors.
// Since square-root is monotonous, we don't have to
// take the square-root to find the minimum, and thus
// we use the squared distance instead to be faster.
// If we want to get fancy, we could convert the RGB
// coordinates to a different color-cube, maybe HSV,
// but the RGB cube seems to work great. (Asger)
distance = pow(cmap[t].red - xcol.red, 2.0) +
pow(cmap[t].green - xcol.green, 2.0) +
pow(cmap[t].blue - xcol.blue, 2.0);
if (distance < closest_distance) {
closest_distance = distance;
closest_pixel = t;
}
}
lyxerr << _("LyX: Couldn't allocate '") << s
<< _("' for ") << lcolor.getGUIName(c)
<< _(" with (r,g,b)=(")
<< xcol.red << "," << xcol.green << ","
<< xcol.blue << ").\n"
<< _(" Using closest allocated "
"color with (r,g,b)=(")
<< cmap[closest_pixel].red << ","
<< cmap[closest_pixel].green << ","
<< cmap[closest_pixel].blue << _(") instead.\n")
<< _("Pixel [") << closest_pixel << _("] is used.")
<< endl;
val.foreground = cmap[closest_pixel].pixel;
delete[] cmap;
}
val.function = GXcopy;
return colorGCcache[c] = XCreateGC(display, drawable,
GCForeground | GCFunction, &val);
}
// Gets GC for line
GC LyXColorHandler::getGCLinepars(PainterBase::line_style ls,
PainterBase::line_width lw, LColor::color c)
{
//if (lyxerr.debugging()) {
// lyxerr << "Painter drawable: " << drawable() << endl;
//}
int index = lw + (ls << 1) + (c << 3);
if (lineGCcache.find(index) != lineGCcache.end())
return lineGCcache[index];
XGCValues val;
XGetGCValues(display, getGCForeground(c), GCForeground, &val);
switch (lw) {
case PainterBase::line_thin: val.line_width = 0; break;
case PainterBase::line_thick: val.line_width = 2; break;
}
switch (ls) {
case PainterBase::line_solid: val.line_style = LineSolid; break;
case PainterBase::line_onoffdash: val.line_style = LineOnOffDash; break;
case PainterBase::line_doubledash: val.line_style = LineDoubleDash; break;
}
val.cap_style = CapRound;
val.join_style = JoinRound;
val.function = GXcopy;
return lineGCcache[index] =
XCreateGC(display, drawable,
GCForeground | GCLineStyle | GCLineWidth |
GCCapStyle | GCJoinStyle | GCFunction, &val);
}
// update GC cache after color redefinition
void LyXColorHandler::updateColor (LColor::color c)
{
// color GC cache
GC gc = colorGCcache[c];
if (gc != NULL) {
XFreeGC(display, gc);
colorGCcache[c] = NULL;
getGCForeground(c);
}
// line GC cache
int index, ls, lw;
for (ls=0; ls<3; ++ls)
for (lw=0; lw<2; ++lw) {
index = lw + (ls << 1) + (c << 3);
if (lineGCcache.find(index) != lineGCcache.end()) {
gc = lineGCcache[index];
XFreeGC(display,gc);
lineGCcache.erase(index);
getGCLinepars(PainterBase::line_style(ls),
PainterBase::line_width(lw), c);
}
}
}
//
LyXColorHandler * lyxColorHandler;