Updated API. First work on impedance tube code
This commit is contained in:
parent
1f9e0325f4
commit
2d33110138
@ -2,4 +2,4 @@ from .soundpressureweighting import *
|
||||
from .filterbank_design import *
|
||||
from .fir_design import *
|
||||
from .colorednoise import *
|
||||
|
||||
from .biquad import *
|
||||
|
@ -108,10 +108,26 @@ class TwoMicImpedanceTube:
|
||||
G_AB = self.K*C[:,1,0]/C[:,0,0]
|
||||
return self.getFreq(), self.cut_to_limits(G_AB)
|
||||
|
||||
def k(self, freq):
|
||||
"""
|
||||
Wave number, or thermoviscous wave number
|
||||
"""
|
||||
if self.thermoviscous:
|
||||
D = self.D_imptube
|
||||
S = pi/4*D**2
|
||||
d = PrsDuct(0, S=S, rh=D/4, cs='circ')
|
||||
d.mat = self.mat
|
||||
omg = 2*pi*freq
|
||||
G, Z = d.GammaZc(omg)
|
||||
return G
|
||||
else:
|
||||
return 2*pi*freq/self.mat.c0
|
||||
|
||||
|
||||
def R(self, meas):
|
||||
freq, G_AB = self.G_AB(meas)
|
||||
s = self.s
|
||||
k = 2*pi*freq/self.mat.c0
|
||||
k = self.k(freq)
|
||||
d1 = self.d1
|
||||
RpA = (G_AB - exp(-1j*k*s))/(exp(1j*k*s)-G_AB)
|
||||
|
||||
|
@ -152,9 +152,11 @@ class IterRawData:
|
||||
stop_offset = self.lastblock_stop_offset
|
||||
else:
|
||||
stop_offset = self.blocksize
|
||||
# print(f'block: {block}, starto: {start_offset}, stopo {stop_offset}')
|
||||
|
||||
self.i +=1
|
||||
return self.fa[block,start_offset:stop_offset,self.channels]
|
||||
return self.fa[block,start_offset:stop_offset,:][:,self.channels]
|
||||
|
||||
|
||||
class IterData(IterRawData):
|
||||
"""
|
||||
@ -362,25 +364,38 @@ class Measurement:
|
||||
"""Returns the measurement time in seconds since the epoch."""
|
||||
return self._time
|
||||
|
||||
@property
|
||||
def rms(self, channels=None):
|
||||
def rms(self, channels=None, substract_average=False):
|
||||
"""Returns the root mean square values for each channel
|
||||
|
||||
Args:
|
||||
channels: list of channels
|
||||
substract_average: If set to true, computes the rms of only the
|
||||
oscillating component of the signal, which is in fact the signal
|
||||
variance.
|
||||
|
||||
Returns:
|
||||
1D array with rms values for each channel
|
||||
"""
|
||||
#
|
||||
try:
|
||||
return self._rms
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
meansquare = 0.
|
||||
meansquare = 0. # Mean square of the signal, including its average
|
||||
sum_ = 0. # Sumf of the values of the signal, used to compute average
|
||||
N = 0
|
||||
with self.file() as f:
|
||||
for block in self.iterData(channels):
|
||||
Nblock = block.shape[0]
|
||||
sum_ += np.sum(block, axis=0)
|
||||
N += Nblock
|
||||
meansquare += np.sum(block**2, axis=0) / self.N
|
||||
self._rms = np.sqrt(meansquare)
|
||||
return self._rms
|
||||
|
||||
avg = sum_/N
|
||||
# In fact, this is not the complete RMS, as in includes the DC
|
||||
# If p = p_dc + p_osc, then rms(p_osc) = sqrt(ms(p)-ms(p_dc))
|
||||
if substract_average:
|
||||
meansquare -= avg**2
|
||||
rms = np.sqrt(meansquare)
|
||||
return rms
|
||||
|
||||
def variance(self, channels=None):
|
||||
return self.rms(substract_average=True)
|
||||
|
||||
def rawData(self, channels=None, **kwargs):
|
||||
"""Returns the raw data as stored in the measurement file,
|
||||
@ -406,7 +421,6 @@ class Measurement:
|
||||
|
||||
return np.concatenate(rawdata, axis=0)
|
||||
|
||||
|
||||
def iterData(self, channels, **kwargs):
|
||||
sensitivity = kwargs.pop('sensitivity', self.sensitivity)
|
||||
if channels is None:
|
||||
@ -484,21 +498,26 @@ class Measurement:
|
||||
blocks = [signal[i*N:(i+1)*N] for i in range(Nblocks)]
|
||||
|
||||
if noiseCorrection:
|
||||
enp1 = [blocks[i+1] - blocks[i] for i in range(Nblocks-1)]
|
||||
noise_est_np1 = [np.average(enp1[i+1]*enp1[i]) for i in range(Nblocks-2)]
|
||||
# The difference between the measured signal in the previous block and
|
||||
# the current block
|
||||
en = [None] + [blocks[i] - blocks[i-1] for i in range(1,Nblocks)]
|
||||
|
||||
noise_est = [None] + [-np.average(en[i]*en[i+1]) for i in range(1,len(en)-1)]
|
||||
|
||||
# Create weighting coefficients
|
||||
sum_inverse_noise = sum([1/n for n in noise_est_np1])
|
||||
c_np1 = [1/(ni*sum_inverse_noise) for ni in noise_est_np1]
|
||||
sum_inverse_noise = sum([1/n for n in noise_est[1:]])
|
||||
c_n = [1/(ni*sum_inverse_noise) for ni in noise_est[1:]]
|
||||
else:
|
||||
c_np1 = [1/(Nblocks-2)]*(Nblocks-2)
|
||||
c_n = [1/(Nblocks-2)]*(Nblocks-2)
|
||||
|
||||
assert np.isclose(sum(c_np1), 1.0)
|
||||
assert np.isclose(sum(c_n), 1.0)
|
||||
assert Nblocks-2 == len(c_n)
|
||||
|
||||
# Average signal over blocks
|
||||
avg = np.zeros((blocks[0].shape), dtype=float)
|
||||
for i in range(0, Nblocks-2):
|
||||
avg += c_np1[i]*blocks[i+1]
|
||||
for n in range(0, Nblocks-2):
|
||||
avg += c_n[n]*blocks[n+1]
|
||||
|
||||
return avg
|
||||
|
||||
def periodicCPS(self, N, channels=None, **kwargs):
|
||||
@ -514,7 +533,7 @@ class Measurement:
|
||||
window = Window.rectangular
|
||||
ps = PowerSpectra(N, window)
|
||||
|
||||
avg = self.periodicAverage(N, channels, **kwargs)
|
||||
avg = np.asfortranarray(self.periodicAverage(N, channels, **kwargs))
|
||||
CS = ps.compute(avg)
|
||||
freq = getFreq(self.samplerate, N)
|
||||
|
||||
@ -554,24 +573,23 @@ class Measurement:
|
||||
f.attrs['sensitivity'] = sens
|
||||
self._sens = sens
|
||||
|
||||
def checkOverflow(self):
|
||||
def checkOverflow(self, channels):
|
||||
"""Coarse check for overflow in measurement.
|
||||
|
||||
Return:
|
||||
True if overflow is possible, else False
|
||||
"""
|
||||
|
||||
with self.file() as f:
|
||||
for block in self.iterBlocks(f):
|
||||
dtype = block.dtype
|
||||
if dtype.kind == 'i':
|
||||
# minvalue = np.iinfo(dtype).min
|
||||
maxvalue = np.iinfo(dtype).max
|
||||
if np.max(np.abs(block)) >= 0.9*maxvalue:
|
||||
return True
|
||||
else:
|
||||
# Cannot check for floating point values.
|
||||
return False
|
||||
for block in self.iterData(channels):
|
||||
dtype = block.dtype
|
||||
if dtype.kind == 'i':
|
||||
# minvalue = np.iinfo(dtype).min
|
||||
maxvalue = np.iinfo(dtype).max
|
||||
if np.max(np.abs(block)) >= 0.9*maxvalue:
|
||||
return True
|
||||
else:
|
||||
# Cannot check for floating point values.
|
||||
return False
|
||||
return False
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user