Use math module methods for singular values
Using numpy methods that are intended for vectorized operations is substantially slower than using the math module, so when feasible the math module methods should be used.
This commit is contained in:
parent
1326ebe2f4
commit
b0a3849960
@ -7,6 +7,7 @@ This example uses the isosurface function to convert a scalar field
|
||||
## Add path to library (just for examples; you do not need this)
|
||||
import initExample
|
||||
|
||||
import numpy as np
|
||||
from pyqtgraph.Qt import QtCore, QtGui
|
||||
import pyqtgraph as pg
|
||||
import pyqtgraph.opengl as gl
|
||||
@ -22,24 +23,18 @@ g = gl.GLGridItem()
|
||||
g.scale(2,2,1)
|
||||
w.addItem(g)
|
||||
|
||||
import numpy as np
|
||||
|
||||
## Define a scalar field from which we will generate an isosurface
|
||||
def psi(i, j, k, offset=(25, 25, 50)):
|
||||
x = i-offset[0]
|
||||
y = j-offset[1]
|
||||
z = k-offset[2]
|
||||
th = np.arctan2(z, (x**2+y**2)**0.5)
|
||||
th = np.arctan2(z, np.sqrt(x**2+y**2))
|
||||
phi = np.arctan2(y, x)
|
||||
r = (x**2 + y**2 + z **2)**0.5
|
||||
r = np.sqrt(x**2 + y**2 + z **2)
|
||||
a0 = 1
|
||||
#ps = (1./81.) * (2./np.pi)**0.5 * (1./a0)**(3/2) * (6 - r/a0) * (r/a0) * np.exp(-r/(3*a0)) * np.cos(th)
|
||||
ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1)
|
||||
|
||||
return ps
|
||||
|
||||
#return ((1./81.) * (1./np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * (r/a0) * np.exp(-r/(3*a0)) * np.sin(th) * np.cos(th) * np.exp(2 * 1j * phi))**2
|
||||
|
||||
|
||||
print("Generating scalar field..")
|
||||
data = np.abs(np.fromfunction(psi, (50,50,100)))
|
||||
|
@ -7,6 +7,7 @@ Demonstrates GLVolumeItem for displaying volumetric data.
|
||||
## Add path to library (just for examples; you do not need this)
|
||||
import initExample
|
||||
|
||||
import numpy as np
|
||||
import pyqtgraph as pg
|
||||
from pyqtgraph.Qt import QtCore, QtGui
|
||||
import pyqtgraph.opengl as gl
|
||||
@ -23,7 +24,6 @@ g = gl.GLGridItem()
|
||||
g.scale(10, 10, 1)
|
||||
w.addItem(g)
|
||||
|
||||
import numpy as np
|
||||
## Hydrogen electron probability density
|
||||
def psi(i, j, k, offset=(50,50,100)):
|
||||
x = i-offset[0]
|
||||
|
@ -9,6 +9,7 @@ used to affect the appearance of a surface.
|
||||
## Add path to library (just for examples; you do not need this)
|
||||
import initExample
|
||||
|
||||
import numpy as np
|
||||
from pyqtgraph.Qt import QtCore, QtGui
|
||||
import pyqtgraph as pg
|
||||
import pyqtgraph.opengl as gl
|
||||
@ -23,9 +24,6 @@ g = gl.GLGridItem()
|
||||
g.scale(2,2,1)
|
||||
w.addItem(g)
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
md = gl.MeshData.sphere(rows=10, cols=20)
|
||||
x = np.linspace(-8, 8, 6)
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from math import atan2, asin, sin, cos, sqrt, pi
|
||||
import pyqtgraph as pg
|
||||
from pyqtgraph.Qt import QtGui, QtCore
|
||||
import numpy as np
|
||||
@ -49,7 +50,7 @@ class GlassDB:
|
||||
B = list(map(float, [info['B1'], info['B2'], info['B3']]))
|
||||
C = list(map(float, [info['C1'], info['C2'], info['C3']]))
|
||||
w2 = (wl/1000.)**2
|
||||
n = np.sqrt(1.0 + (B[0]*w2 / (w2-C[0])) + (B[1]*w2 / (w2-C[1])) + (B[2]*w2 / (w2-C[2])))
|
||||
n = sqrt(1.0 + (B[0]*w2 / (w2-C[0])) + (B[1]*w2 / (w2-C[1])) + (B[2]*w2 / (w2-C[2])))
|
||||
cache[wl] = n
|
||||
return cache[wl]
|
||||
|
||||
@ -249,10 +250,14 @@ class Lens(Optic):
|
||||
p1 = surface.mapToItem(ray, p1)
|
||||
|
||||
rd = ray['dir']
|
||||
a1 = np.arctan2(rd[1], rd[0])
|
||||
ar = a1 - ai + np.arcsin((np.sin(ai) * ray['ior'] / ior))
|
||||
|
||||
a1 = atan2(rd[1], rd[0])
|
||||
try:
|
||||
ar = a1 - ai + asin((sin(ai) * ray['ior'] / ior))
|
||||
except ValueError:
|
||||
ar = np.nan
|
||||
ray.setEnd(p1)
|
||||
dp = Point(np.cos(ar), np.sin(ar))
|
||||
dp = Point(cos(ar), sin(ar))
|
||||
ray = Ray(parent=ray, ior=ior, dir=dp)
|
||||
return [ray]
|
||||
|
||||
@ -279,10 +284,10 @@ class Mirror(Optic):
|
||||
if p1 is not None:
|
||||
p1 = surface.mapToItem(ray, p1)
|
||||
rd = ray['dir']
|
||||
a1 = np.arctan2(rd[1], rd[0])
|
||||
ar = a1 + np.pi - 2*ai
|
||||
a1 = atan2(rd[1], rd[0])
|
||||
ar = a1 + pi - 2*ai
|
||||
ray.setEnd(p1)
|
||||
dp = Point(np.cos(ar), np.sin(ar))
|
||||
dp = Point(cos(ar), sin(ar))
|
||||
ray = Ray(parent=ray, dir=dp)
|
||||
else:
|
||||
ray.setEnd(None)
|
||||
@ -374,7 +379,7 @@ class CircleSurface(pg.GraphicsObject):
|
||||
## half-height of surface can't be larger than radius
|
||||
h2 = min(h2, abs(r))
|
||||
arc = QtCore.QRectF(0, -r, r*2, r*2)
|
||||
a1 = np.arcsin(h2/r) * 180. / np.pi
|
||||
a1 = asin(h2/r) * 180. / pi
|
||||
a2 = -2*a1
|
||||
a1 += 180.
|
||||
self.path.arcMoveTo(arc, a1)
|
||||
@ -406,7 +411,7 @@ class CircleSurface(pg.GraphicsObject):
|
||||
if abs(y) > h:
|
||||
return None, None
|
||||
else:
|
||||
return (Point(0, y), np.arctan2(dir[1], dir[0]))
|
||||
return (Point(0, y), atan2(dir[1], dir[0]))
|
||||
else:
|
||||
#print " curve"
|
||||
## find intersection of circle and line (quadratic formula)
|
||||
@ -436,19 +441,12 @@ class CircleSurface(pg.GraphicsObject):
|
||||
pt = Point(x2, y2)
|
||||
if not br.contains(x2+r, y2):
|
||||
return None, None
|
||||
raise Exception("No intersection!")
|
||||
|
||||
norm = np.arctan2(pt[1], pt[0])
|
||||
norm = atan2(pt[1], pt[0])
|
||||
if r < 0:
|
||||
norm += np.pi
|
||||
#print " norm:", norm*180/3.1415
|
||||
norm += pi
|
||||
dp = p - pt
|
||||
#print " dp:", dp
|
||||
ang = np.arctan2(dp[1], dp[0])
|
||||
#print " ang:", ang*180/3.1415
|
||||
#print " ai:", (ang-norm)*180/3.1415
|
||||
|
||||
#print " intersection:", pt
|
||||
ang = atan2(dp[1], dp[0])
|
||||
return pt + Point(r, 0), ang-norm
|
||||
|
||||
|
||||
|
@ -6,7 +6,7 @@ Distributed under MIT/X11 license. See license.txt for more information.
|
||||
"""
|
||||
|
||||
from .Qt import QtCore
|
||||
import numpy as np
|
||||
from math import sin, acos, atan2, inf, pi
|
||||
|
||||
def clip(x, mn, mx):
|
||||
if x > mx:
|
||||
@ -109,9 +109,9 @@ class Point(QtCore.QPointF):
|
||||
return (self[0]**2 + self[1]**2) ** 0.5
|
||||
except OverflowError:
|
||||
try:
|
||||
return self[1] / np.sin(np.arctan2(self[1], self[0]))
|
||||
return self[1] / sin(atan2(self[1], self[0]))
|
||||
except OverflowError:
|
||||
return np.inf
|
||||
return inf
|
||||
|
||||
def norm(self):
|
||||
"""Returns a vector in the same direction with unit length."""
|
||||
@ -124,11 +124,11 @@ class Point(QtCore.QPointF):
|
||||
if n1 == 0. or n2 == 0.:
|
||||
return None
|
||||
## Probably this should be done with arctan2 instead..
|
||||
ang = np.arccos(clip(self.dot(a) / (n1 * n2), -1.0, 1.0)) ### in radians
|
||||
ang = acos(clip(self.dot(a) / (n1 * n2), -1.0, 1.0)) ### in radians
|
||||
c = self.cross(a)
|
||||
if c > 0:
|
||||
ang *= -1.
|
||||
return ang * 180. / np.pi
|
||||
return ang * 180. / pi
|
||||
|
||||
def dot(self, a):
|
||||
"""Returns the dot product of a and this Point."""
|
||||
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from math import atan2, pi
|
||||
from .Qt import QtCore, QtGui
|
||||
from .Point import Point
|
||||
import numpy as np
|
||||
@ -76,7 +77,7 @@ class SRTTransform(QtGui.QTransform):
|
||||
self._state = {
|
||||
'pos': Point(p1),
|
||||
'scale': Point(dp2.length(), dp3.length() * sy),
|
||||
'angle': (np.arctan2(dp2[1], dp2[0]) * 180. / np.pi) + da
|
||||
'angle': (atan2(dp2[1], dp2[0]) * 180. / pi) + da
|
||||
}
|
||||
self.update()
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from math import atan2, pi
|
||||
from .Qt import QtCore, QtGui
|
||||
from .Vector import Vector
|
||||
from .Transform3D import Transform3D
|
||||
@ -164,7 +165,7 @@ class SRTTransform3D(Transform3D):
|
||||
sin = (r-r.T)[rInd] / (2. * sign * axis[axisInd])
|
||||
|
||||
## finally, we get the complete angle from arctan(sin/cos)
|
||||
self._state['angle'] = np.arctan2(sin, cos) * 180 / np.pi
|
||||
self._state['angle'] = atan2(sin, cos) * 180 / pi
|
||||
if self._state['angle'] == 0:
|
||||
self._state['axis'] = (0,0,1)
|
||||
|
||||
|
@ -1,5 +1,7 @@
|
||||
from math import atan2, pi
|
||||
from ..Qt import QtGui, QtCore
|
||||
from . import ArrowItem
|
||||
from ..functions import clip_scalar
|
||||
import numpy as np
|
||||
from ..Point import Point
|
||||
import weakref
|
||||
@ -65,22 +67,22 @@ class CurvePoint(GraphicsObject):
|
||||
|
||||
if index != int(index): ## interpolate floating-point values
|
||||
i1 = int(index)
|
||||
i2 = np.clip(i1+1, 0, len(x)-1)
|
||||
i2 = clip_scalar(i1+1, 0, len(x)-1)
|
||||
s2 = index-i1
|
||||
s1 = 1.0-s2
|
||||
newPos = (x[i1]*s1+x[i2]*s2, y[i1]*s1+y[i2]*s2)
|
||||
else:
|
||||
index = int(index)
|
||||
i1 = np.clip(index-1, 0, len(x)-1)
|
||||
i2 = np.clip(index+1, 0, len(x)-1)
|
||||
i1 = clip_scalar(index-1, 0, len(x)-1)
|
||||
i2 = clip_scalar(index+1, 0, len(x)-1)
|
||||
newPos = (x[index], y[index])
|
||||
|
||||
p1 = self.parentItem().mapToScene(QtCore.QPointF(x[i1], y[i1]))
|
||||
p2 = self.parentItem().mapToScene(QtCore.QPointF(x[i2], y[i2]))
|
||||
ang = np.arctan2(p2.y()-p1.y(), p2.x()-p1.x()) ## returns radians
|
||||
ang = atan2(p2.y()-p1.y(), p2.x()-p1.x()) ## returns radians
|
||||
self.resetTransform()
|
||||
if self._rotate:
|
||||
self.setRotation(180 + np.rad2deg(ang)) ## takes degrees
|
||||
self.setRotation(180 + ang * (180. / pi))
|
||||
QtGui.QGraphicsItem.setPos(self, *newPos)
|
||||
return True
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from math import atan2, pi
|
||||
from ..Qt import QtGui, QtCore
|
||||
from ..Point import Point
|
||||
from .GraphicsObject import GraphicsObject
|
||||
@ -359,7 +360,7 @@ class InfiniteLine(GraphicsObject):
|
||||
up = tr.map(Point(left, 1))
|
||||
dif = end - start
|
||||
length = Point(dif).length()
|
||||
angle = np.arctan2(dif.y(), dif.x()) * 180 / np.pi
|
||||
angle = atan2(dif.y(), dif.x()) * 180 / pi
|
||||
|
||||
p.translate(start)
|
||||
p.rotate(angle)
|
||||
|
@ -17,7 +17,7 @@ import numpy as np
|
||||
#from numpy.linalg import norm
|
||||
from ..Point import *
|
||||
from ..SRTTransform import SRTTransform
|
||||
from math import cos, sin
|
||||
from math import atan2, cos, sin, pi, sqrt
|
||||
from .. import functions as fn
|
||||
from .GraphicsObject import GraphicsObject
|
||||
from .UIGraphicsItem import UIGraphicsItem
|
||||
@ -1247,8 +1247,8 @@ class ROI(GraphicsObject):
|
||||
vx = img.mapToData(self.mapToItem(img, QtCore.QPointF(1, 0))) - origin
|
||||
vy = img.mapToData(self.mapToItem(img, QtCore.QPointF(0, 1))) - origin
|
||||
|
||||
lvx = np.sqrt(vx.x()**2 + vx.y()**2)
|
||||
lvy = np.sqrt(vy.x()**2 + vy.y()**2)
|
||||
lvx = sqrt(vx.x()**2 + vx.y()**2)
|
||||
lvy = sqrt(vy.x()**2 + vy.y()**2)
|
||||
##img.width is number of pixels, not width of item.
|
||||
##need pxWidth and pxHeight instead of pxLen ?
|
||||
sx = 1.0 / lvx
|
||||
@ -1332,8 +1332,8 @@ class Handle(UIGraphicsItem):
|
||||
properties of the ROI they are attached to.
|
||||
"""
|
||||
types = { ## defines number of sides, start angle for each handle type
|
||||
't': (4, np.pi/4),
|
||||
'f': (4, np.pi/4),
|
||||
't': (4, pi/4),
|
||||
'f': (4, pi/4),
|
||||
's': (4, 0),
|
||||
'r': (12, 0),
|
||||
'sr': (12, 0),
|
||||
@ -1481,7 +1481,7 @@ class Handle(UIGraphicsItem):
|
||||
size = self.radius
|
||||
self.path = QtGui.QPainterPath()
|
||||
ang = self.startAng
|
||||
dt = 2*np.pi / self.sides
|
||||
dt = 2 * pi / self.sides
|
||||
for i in range(0, self.sides+1):
|
||||
x = size * cos(ang)
|
||||
y = size * sin(ang)
|
||||
@ -1518,13 +1518,13 @@ class Handle(UIGraphicsItem):
|
||||
return None
|
||||
|
||||
v = dt.map(QtCore.QPointF(1, 0)) - dt.map(QtCore.QPointF(0, 0))
|
||||
va = np.arctan2(v.y(), v.x())
|
||||
va = atan2(v.y(), v.x())
|
||||
|
||||
dti = fn.invertQTransform(dt)
|
||||
devPos = dt.map(QtCore.QPointF(0,0))
|
||||
tr = QtGui.QTransform()
|
||||
tr.translate(devPos.x(), devPos.y())
|
||||
tr.rotate(va * 180. / 3.1415926)
|
||||
tr.rotate(va * 180. / pi)
|
||||
|
||||
return dti.map(tr.map(self.path))
|
||||
|
||||
@ -1663,7 +1663,7 @@ class LineROI(ROI):
|
||||
d = pos2-pos1
|
||||
l = d.length()
|
||||
ang = Point(1, 0).angle(d)
|
||||
ra = ang * np.pi / 180.
|
||||
ra = ang * pi / 180.
|
||||
c = Point(-width/2. * sin(ra), -width/2. * cos(ra))
|
||||
pos1 = pos1 + c
|
||||
|
||||
@ -1914,7 +1914,7 @@ class EllipseROI(ROI):
|
||||
center = br.center()
|
||||
r1 = br.width() / 2.
|
||||
r2 = br.height() / 2.
|
||||
theta = np.linspace(0, 2*np.pi, 24)
|
||||
theta = np.linspace(0, 2 * pi, 24)
|
||||
x = center.x() + r1 * np.cos(theta)
|
||||
y = center.y() + r2 * np.sin(theta)
|
||||
path.moveTo(x[0], y[0])
|
||||
@ -2396,7 +2396,7 @@ class TriangleROI(ROI):
|
||||
def __init__(self, pos, size, **args):
|
||||
ROI.__init__(self, pos, [size, size], **args)
|
||||
self.aspectLocked = True
|
||||
angles = np.linspace(0, np.pi * 4 / 3, 3)
|
||||
angles = np.linspace(0, pi * 4 / 3, 3)
|
||||
verticies = (np.array((np.sin(angles), np.cos(angles))).T + 1.0) / 2.0
|
||||
self.poly = QtGui.QPolygonF()
|
||||
for pt in verticies:
|
||||
|
@ -1,4 +1,4 @@
|
||||
import numpy as np
|
||||
from math import pi, atan2
|
||||
from ..Qt import QtCore, QtGui
|
||||
from ..Point import Point
|
||||
from .. import functions as fn
|
||||
@ -208,7 +208,7 @@ class TextItem(GraphicsObject):
|
||||
angle = -self.angle
|
||||
if self.rotateAxis is not None:
|
||||
d = pt.map(self.rotateAxis) - pt.map(Point(0, 0))
|
||||
a = np.arctan2(d.y(), d.x()) * 180 / np.pi
|
||||
a = atan2(d.y(), d.x()) * 180 / pi
|
||||
angle += a
|
||||
t.rotate(angle)
|
||||
self.setTransform(t)
|
||||
|
Loading…
x
Reference in New Issue
Block a user