lyx_mirror/src/Graph.cpp

252 lines
5.6 KiB
C++
Raw Normal View History

/**
* \file Graph.cpp
* This file is part of LyX, the document processor.
* Licence details can be found in the file COPYING.
*
* \author Dekel Tsur (original code)
* \author Richard Heck (re-implementation)
*
* Full author contact details are available in file CREDITS.
*/
#include <config.h>
#include "Graph.h"
#include "Format.h"
#include "support/debug.h"
#include "support/lassert.h"
#include <algorithm>
using namespace std;
namespace lyx {
bool Graph::bfs_init(int s, bool clear_visited)
{
if (s < 0)
return false;
Q_ = queue<int>();
if (clear_visited) {
vector<Vertex>::iterator it = vertices_.begin();
vector<Vertex>::iterator en = vertices_.end();
for (; it != en; ++it)
it->visited = false;
}
if (!vertices_[s].visited) {
Q_.push(s);
vertices_[s].visited = true;
}
return true;
}
void Graph::clearMarks()
{
Arrows::iterator it = arrows_.begin();
Arrows::iterator const en = arrows_.end();
for (; it != en; ++it)
it->marked = false;
}
vector<int> const
Graph::getReachableTo(int target, bool clear_visited)
{
vector<int> result;
if (!bfs_init(target, clear_visited))
return result;
// Here's the logic, which is shared by the other routines.
// Q_ holds a list of nodes we have been able to reach (in this
// case, reach backwards). It is initialized to the current node
// by bfs_init, and then we recurse, adding the nodes we can reach
// from the current node as we go. That makes it a breadth-first
// search.
while (!Q_.empty()) {
int const current = Q_.front();
Q_.pop();
if (current != target || formats.get(target).name() != "lyx")
result.push_back(current);
vector<Arrow *>::iterator it = vertices_[current].in_arrows.begin();
vector<Arrow *>::iterator const end = vertices_[current].in_arrows.end();
for (; it != end; ++it) {
const int cv = (*it)->from;
if (!vertices_[cv].visited) {
vertices_[cv].visited = true;
Q_.push(cv);
}
}
}
return result;
}
vector<int> const
Graph::getReachable(int from, bool only_viewable,
bool clear_visited)
{
vector<int> result;
if (!bfs_init(from, clear_visited))
return result;
while (!Q_.empty()) {
int const current = Q_.front();
Q_.pop();
Format const & format = formats.get(current);
if (!only_viewable || !format.viewer().empty())
result.push_back(current);
else if (format.isChildFormat()) {
Format const * const parent =
formats.getFormat(format.parentFormat());
if (parent && !parent->viewer().empty())
result.push_back(current);
}
vector<Arrow *>::const_iterator cit =
vertices_[current].out_arrows.begin();
vector<Arrow *>::const_iterator end =
vertices_[current].out_arrows.end();
for (; cit != end; ++cit) {
int const cv = (*cit)->to;
if (!vertices_[cv].visited) {
vertices_[cv].visited = true;
Q_.push(cv);
}
}
}
return result;
}
bool Graph::isReachable(int from, int to)
{
if (from == to)
return true;
if (to < 0 || !bfs_init(from))
return false;
while (!Q_.empty()) {
int const current = Q_.front();
Q_.pop();
if (current == to)
return true;
vector<Arrow *>::const_iterator cit =
vertices_[current].out_arrows.begin();
vector<Arrow *>::const_iterator end =
vertices_[current].out_arrows.end();
for (; cit != end; ++cit) {
int const cv = (*cit)->to;
if (!vertices_[cv].visited) {
vertices_[cv].visited = true;
Q_.push(cv);
}
}
}
return false;
}
Graph::EdgePath const Graph::getPath(int from, int to)
{
EdgePath path;
if (from == to)
return path;
if (to < 0 || !bfs_init(from))
return path;
// In effect, the way this works is that we construct a sub-graph
// by starting at "from" and following the arrows outward. Instead
// of actually constructing a sub-graph, though, we "mark" the
// arrows we traverse as we go. Once we hit "to", we abort the
// marking process and then call getMarkedPath() to reconstruct
// the marked path.
bool found = false;
clearMarks();
while (!Q_.empty()) {
int const current = Q_.front();
Q_.pop();
vector<Arrow *>::const_iterator const beg =
vertices_[current].out_arrows.begin();
vector<Arrow *>::const_iterator cit = beg;
vector<Arrow *>::const_iterator end =
vertices_[current].out_arrows.end();
for (; cit != end; ++cit) {
int const cv = (*cit)->to;
if (!vertices_[cv].visited) {
vertices_[cv].visited = true;
Q_.push(cv);
(*cit)->marked = true;
}
if (cv == to) {
found = true;
break;
}
}
}
if (!found)
return path;
getMarkedPath(from, to, path);
return path;
}
// We assume we have marked the graph, as in getPath(). We also
// assume that we have done so in such a way as to guarantee a
// marked path from "from" to "to".
// We then start at "to" and find the arrow leading to it that
// has been marked. We add that to the path we are constructing,
// step back on that arrow, and continue the process (i.e., recurse).
void Graph::getMarkedPath(int from, int to, EdgePath & path) {
if (from == to) {
reverse(path.begin(), path.end());
return;
}
// find marked in_arrow
vector<Arrow *>::const_iterator it = vertices_[to].in_arrows.begin();
vector<Arrow *>::const_iterator en = vertices_[to].in_arrows.end();
for (; it != en; ++it)
if ((*it)->marked)
break;
if (it == en) {
LASSERT(false, /* */);
return;
}
path.push_back((*it)->id);
getMarkedPath(from, (*it)->from, path);
}
void Graph::init(int size)
{
vertices_ = vector<Vertex>(size);
arrows_.clear();
numedges_ = 0;
}
void Graph::addEdge(int from, int to)
{
arrows_.push_back(Arrow(from, to, numedges_));
numedges_++;
Arrow * ar = &(arrows_.back());
vertices_[to].in_arrows.push_back(ar);
vertices_[from].out_arrows.push_back(ar);
}
} // namespace lyx