lasp/python_src/lasp/lasp_measurement.py

919 lines
30 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
"""!
Author: J.A. de Jong - ASCEE
Description: Measurement class
The ASCEE hdf5 measurement file format contains the following fields:
- Attributes:
'version': If not given, version 1 is assumed. For version 1, measurement data
is assumed to be acoustic data.
'samplerate': The audio data sample rate in Hz.
'nchannels': The number of audio channels in the file
'sensitivity': (Optionally) the stored sensitivity of the record channels.
This can be a single value, or a list of sensitivities for
each channel. Both representations are allowed.
For measurement files of LASP < v1.0
2021-10-18 07:17:36 +00:00
'qtys' : (Optionally): list of quantities that is recorded for each channel',
if this array is not found. Quantities are defaulted to 'Number / Full scale'
For measurement files of LASP >= 1.0
- Datasets:
'audio': 3-dimensional array of blocks of audio data. The first axis is the
2021-10-18 07:17:36 +00:00
block index, the second axis the sample number and the third axis is the
channel number. The data type is either int16, int32 or float64 / float32. If
raw data is stored as integer values (int16, int32), the actual values should
be pre-scaled by its maximum positive number (2**(nb-1) - 1), such that the
corresponding 'number' lies between -1.0 and 1.0.
'video': 4-dimensional array of video frames. The first index is the frame
number, the second the x-value of the pixel and the third is the
y-value of the pixel. Then, the last axis is the color. This axis has
length 3 and the colors are stored as (r,g,b). Where typically a
color depth of 256 is used (np.uint8 data format)
The video dataset can possibly be not present in the data.
"""
__all__ = ["Measurement", "scaleBlockSens"]
from contextlib import contextmanager
import h5py as h5
import numpy as np
from .lasp_config import LASP_NUMPY_FLOAT_TYPE
from scipy.io import wavfile
import os, time, wave, logging
from .lasp_common import SIQtys, Qty, getFreq
from .lasp_version import LASP_VERSION_MAJOR, LASP_VERSION_MINOR
from .lasp_cpp import Window, DaqChannel, AvPowerSpectra
from typing import List
from functools import lru_cache
def getSampWidth(dtype):
"""Returns the width of a single sample in **bytes**.
Args:
dtype: numpy dtype
Returns:
Size of a sample in bytes (int)
"""
if dtype in (np.int32, np.float32):
return 4
elif dtype == np.int16:
return 2
elif dtype == np.float64:
return 8
else:
raise ValueError("Invalid data type: %s" % dtype)
2021-10-18 07:17:36 +00:00
def scaleBlockSens(block, sens):
"""Scale a block of raw data to return raw acoustic pressure data.
Args:
block: block of raw data with integer data type
sens: array of sensitivity coeficients for
each channel.
"""
sens = np.asarray(sens)
assert sens.size == block.shape[1]
if np.issubdtype(block.dtype.type, np.integer):
sw = getSampWidth(block.dtype)
fac = 2 ** (8 * sw - 1) - 1
else:
fac = 1.0
2019-10-27 13:19:26 +00:00
return block.astype(LASP_NUMPY_FLOAT_TYPE) / fac / sens[np.newaxis, :]
class IterRawData:
"""Iterate over stored blocks if the raw measurement data of a h5 file."""
def __init__(self, f, channels, **kwargs):
"""Initialize a BlockIter object.
Args:
f: Audio dataset in the h5 file, accessed as f['audio']
2021-04-29 18:48:21 +00:00
channels: list of channel indices to use
istart: index of first sample
istop: index of last sample (not including istop)
"""
assert isinstance(channels, list)
fa = f["audio"]
self.fa = fa
self.i = 0
nblocks = fa.shape[0]
blocksize = fa.shape[1]
self.blocksize = blocksize
# nchannels = fa.shape[2]
self.channels = channels
self.istart = kwargs.pop("istart", 0)
self.istop = kwargs.pop("istop", blocksize * nblocks)
self.firstblock = self.istart // blocksize
self.lastblock = self.istop // blocksize
if self.istop % blocksize == 0:
self.lastblock -= 1
self.firstblock_start_offset = self.istart % blocksize
if self.istop < 0:
self.istop += blocksize * nblocks
if self.istop <= self.istart:
raise ValueError("Stop index is smaller than start index")
if self.istop != blocksize * nblocks:
self.lastblock_stop_offset = self.istop % blocksize
else:
self.lastblock_stop_offset = blocksize
def __iter__(self):
return self
def __next__(self):
"""Return the next block."""
fa = self.fa
# nblocks_to_return = self.lastblock-self.firstblock+1
block = self.firstblock + self.i
if block > self.lastblock:
raise StopIteration
if block == self.firstblock:
start_offset = self.firstblock_start_offset
else:
start_offset = 0
if block == self.lastblock:
stop_offset = self.lastblock_stop_offset
else:
stop_offset = self.blocksize
# print(f'block: {block}, starto: {start_offset}, stopo {stop_offset}')
2021-10-18 07:17:36 +00:00
self.i += 1
return fa[block, start_offset:stop_offset, :][:, self.channels]
class IterData(IterRawData):
"""
Iterate over blocks of data, scaled with sensitivity and integer scaling
between 0 and 1
"""
def __init__(self, fa, channels, sensitivity, **kwargs):
super().__init__(fa, channels, **kwargs)
self.sens = np.asarray(sensitivity)[self.channels]
assert self.sens.ndim == 1
def __next__(self):
nextraw = super().__next__()
return scaleBlockSens(nextraw, self.sens)
class Measurement:
"""Provides access to measurement data stored in the h5 measurement file
format."""
def __init__(self, fn):
"""Initialize a Measurement object based on the filename."""
if ".h5" not in fn:
fn += ".h5"
# Full filepath
self.fn = fn
# Base filename
self.fn_base = os.path.split(fn)[1]
# Open the h5 file in read-plus mode, to allow for changing the
# measurement comment.
with h5.File(fn, "r") as f:
# Check for video data
try:
f["video"]
self.has_video = True
except KeyError:
self.has_video = False
self.nblocks, self.blocksize, self.nchannels = f["audio"].shape
dtype = f["audio"].dtype
self.dtype = dtype
self.sampwidth = getSampWidth(dtype)
self.samplerate = f.attrs["samplerate"]
self.N = self.nblocks * self.blocksize
2019-10-27 13:19:26 +00:00
self.T = self.N / self.samplerate
try:
self.version_major = f.attrs["LASP_VERSION_MAJOR"]
self.version_minor = f.attrs["LASP_VERSION_MINOR"]
except KeyError:
self.version_major = 0
self.version_minor = 1
# Due to a previous bug, the channel names were not stored
# consistently, i.e. as 'channel_names' and later camelcase.
try:
self._channelNames = f.attrs["channelNames"]
except KeyError:
try:
self._channelNames = f.attrs["channel_names"]
logging.info(
"Measurement file obtained which stores channel names with *old* attribute 'channel_names'"
)
except KeyError:
# No channel names found in measurement file
logging.info("No channel name data found in measurement")
self._channelNames = [f"Unnamed {i}" for i in range(self.nchannels)]
# comment = read-write thing
if "comment" in f.attrs:
self._comment = f.attrs["comment"]
else:
self._comment = ""
# Sensitivity
try:
sens = f.attrs["sensitivity"]
self._sens = (
sens * np.ones(self.nchannels) if isinstance(sens, float) else sens
)
except KeyError:
self._sens = np.ones(self.nchannels)
# The time is cached AND ALWAYS ASSUMED TO BE AN IMMUTABLE OBJECT.
# It is also cached. Changing the measurement timestamp should not
# be done.
self._time = f.attrs["time"]
2022-10-20 10:29:24 +00:00
# Quantity stored as channel.
self._qtys = None
try:
qtys_enum_idx = f.attrs["qtys_enum_idx"]
self._qtys = [SIQtys.fromInt(idx) for idx in qtys_enum_idx]
except KeyError:
2022-10-20 10:29:24 +00:00
try:
qtys_json = f.attrs["qtys"]
2022-10-20 10:29:24 +00:00
# Load quantity data
self._qtys = [Qty.from_json(qty_json) for qty_json in qtys_json]
2022-10-20 10:29:24 +00:00
except KeyError:
# If quantity data is not available, this is an 'old'
# measurement file.
pass
if self._qtys is None:
2021-06-17 08:44:08 +00:00
self._qtys = [SIQtys.default() for i in range(self.nchannels)]
logging.debug(
f"Physical quantity data not available in measurement file. Assuming {SIQtys.default}"
)
def setAttribute(self, atrname, value):
"""
Set an attribute in the measurement file, and keep a local copy in
memory for efficient accessing.
"""
with self.file("r+") as f:
# Update comment attribute in the file
f.attrs[atrname] = value
setattr(self, "_" + atrname, value)
@property
def name(self):
"""Returns filename base without extension."""
return os.path.splitext(self.fn_base)[0]
@property
def channelNames(self):
return self._channelNames
@channelNames.setter
def channelNames(self, newchnames):
if len(newchnames) != self.nchannels:
raise RuntimeError("Invalid length of new channel names")
self.setAttribute("channelNames", newchnames)
@property
def channelConfig(self):
chcfg = []
for chname, sens, qty in zip(self.channelNames, self.sensitivity, self.qtys):
ch = DaqChannel()
ch.enabled = True
ch.name = chname
ch.sensitivity = sens
ch.qty = qty.cpp_enum
chcfg.append(ch)
return chcfg
@channelConfig.setter
def channelConfig(self, chcfg: List[DaqChannel]):
chname = []
sens = []
qtys = []
for ch in chcfg:
chname.append(ch.name)
sens.append(ch.sensitivity)
qtys.append(SIQtys.fromCppEnum(ch.qty))
self.channelNames = chname
self.sensitivity = sens
self.qtys = qtys
@property
def qtys(self):
return self._qtys
@qtys.setter
def qtys(self, newqtys):
if not len(newqtys) == len(self._qtys):
raise ValueError("Invalid number of quantities")
qtys_int = [qty.toInt() for qty in newqtys]
# Use setAttribute here, but thos store the jsonified version as well,
# which we have to overwrite again with the deserialized ones. This is
# actually not a very nice way of coding.
with self.file("r+") as f:
# Update comment attribute in the file
f.attrs["qtys_enum_idx"] = qtys_int
self._qtys = newqtys
@contextmanager
def file(self, mode="r"):
"""Contextmanager which opens the storage file and yields the file.
Args:
mode: Opening mode for the file. Should either be 'r', or 'r+'
"""
if mode not in ("r", "r+"):
raise ValueError("Invalid file opening mode.")
with h5.File(self.fn, mode) as f:
yield f
@property
def comment(self):
"""Return the measurement comment.
2019-01-05 11:13:05 +00:00
Returns:
The measurement comment (text string)
"""
return self._comment
@comment.setter
def comment(self, cmt):
"""Set the measurement comment.
2019-01-05 11:13:05 +00:00
Args:
cmt: Comment text string to set
"""
with self.file("r+") as f:
2019-01-05 11:13:05 +00:00
# Update comment attribute in the file
f.attrs["comment"] = cmt
self._comment = cmt
@property
@lru_cache()
def recTime(self):
"""Returns the total recording time of the measurement, in float
seconds."""
2019-10-27 13:19:26 +00:00
return self.blocksize * self.nblocks / self.samplerate
@property
def time(self):
"""Returns the measurement time in seconds since the epoch."""
return self._time
@property
@lru_cache()
def timestr(self):
"""
Return a properly formatted string of the measurement time, in order of
year-month-day hour etc.
"""
time_struct = time.localtime(self.time)
time_string = time.strftime("%Y-%m-%d %H:%M:%S", time_struct)
return time_string
def rms(self, channels=None, substract_average=False):
"""Returns the root mean square values for each channel
Args:
channels: list of channels
substract_average: If set to true, computes the rms of only the
oscillating component of the signal, which is in fact the signal
variance.
Returns:
1D array with rms values for each channel
"""
meansquare = 0.0 # Mean square of the signal, including its average
sum_ = 0.0 # Sumf of the values of the signal, used to compute average
N = 0
with self.file() as f:
for block in self.iterData(channels):
Nblock = block.shape[0]
sum_ += np.sum(block, axis=0)
N += Nblock
meansquare += np.sum(block**2, axis=0) / self.N
avg = sum_ / N
# In fact, this is not the complete RMS, as in includes the DC
# If p = p_dc + p_osc, then rms(p_osc) = sqrt(ms(p)-ms(p_dc))
if substract_average:
meansquare -= avg**2
rms = np.sqrt(meansquare)
return rms
def variance(self, channels=None):
return self.rms(substract_average=True)
def rawData(self, channels=None, **kwargs):
"""Returns the raw data as stored in the measurement file,
without any transformations applied
args:
channels: list, or tuple of channel numbers to export. If not defined, all
channels in the measurement are returned
returns:
Numpy array with data. The first axis is always the time instance,
the second axis the channel number.
"""
if channels is None:
channels = list(range(self.nchannels))
rawdata = []
with self.file() as f:
for block in IterRawData(f, channels, **kwargs):
rawdata.append(block)
return np.concatenate(rawdata, axis=0)
def iterData(self, channels, **kwargs):
sensitivity = kwargs.pop("sensitivity", self.sensitivity)
if channels is None:
channels = list(range(self.nchannels))
with self.file() as f:
for block in IterData(f, channels, sensitivity, **kwargs):
yield block
def data(self, channels=None, **kwargs):
"""
Returns the measurement data, scaled and sensitivity applied.
"""
data = []
for d in self.iterData(channels, **kwargs):
data.append(d)
return np.concatenate(data, axis=0)
def CPS(self, channels=None, **kwargs):
"""
Compute single-sided Cross-Power-Spectrum of the measurement channels
Args:
channels: Channels to compute for (numbers)
Optional arguments:
nfft: FFT length
window: Window type
overlap: Overlap percentage (value between 0.0 and up to and
including 100.0)
weighting:
Returns:
Cross-power-spectra. C[freq, ch_i, ch_j] = C_ij
"""
nfft = kwargs.pop("nfft", 2048)
window = kwargs.pop("windowType", Window.WindowType.Hann)
overlap = kwargs.pop("overlap", 50.0)
if channels is None:
channels = list(range(self.nchannels))
nchannels = len(channels)
2022-11-08 13:27:16 +00:00
aps = AvPowerSpectra(nfft, window, overlap)
freq = getFreq(self.samplerate, nfft)
for data in self.iterData(channels, **kwargs):
2022-11-08 13:27:16 +00:00
CS = aps.compute(data)
2022-11-14 10:11:03 +00:00
return freq, aps.get_est()
def periodicAverage(self, N, channels=None, noiseCorrection=True, **kwargs):
"""
Return the (coherent) periodic average the measurement. This method is
useful for a situation of periodic excitation.
Args:
N: The number of samples in one period. This value should
correspond with the period of the excitation!
noiseCorrection: whether to apply coherent averaging, according to
the Sliding Window correlation method (SWiC): Telle et al.: A Novel
Approach for Impulse Response Measurements with Time-Varying Noise.
If set to False, just the arithmetic average is used.
"""
# Create blocks of equal length N
Ntot = self.N
Nblocks = Ntot // N
# TODO: This method graps the whole measurement file into memory. Can
# only be done with relatively small measurement files.
signal = self.data(channels)
# Estimate noise power in block
blocks = [signal[i * N : (i + 1) * N] for i in range(Nblocks)]
if noiseCorrection:
# The difference between the measured signal in the previous block and
# the current block
en = [None] + [blocks[i] - blocks[i - 1] for i in range(1, Nblocks)]
noise_est = [None] + [
-np.average(en[i] * en[i + 1]) for i in range(1, len(en) - 1)
]
# Create weighting coefficients
sum_inverse_noise = sum([1 / n for n in noise_est[1:]])
c_n = [1 / (ni * sum_inverse_noise) for ni in noise_est[1:]]
else:
c_n = [1 / (Nblocks - 2)] * (Nblocks - 2)
assert np.isclose(sum(c_n), 1.0)
assert Nblocks - 2 == len(c_n)
# Average signal over blocks
avg = np.zeros((blocks[0].shape), dtype=float)
for n in range(0, Nblocks - 2):
avg += c_n[n] * blocks[n + 1]
return avg
def periodicCPS(self, N, channels=None, **kwargs):
"""
Compute Cross-Spectral Density based on periodic excitation. Uses noise
reduction by time-averaging the data.
"""
if channels is None:
channels = list(range(self.nchannels))
nchannels = len(channels)
window = Window.rectangular
ps = PowerSpectra(N, window)
avg = np.asfortranarray(self.periodicAverage(N, channels, **kwargs))
CS = ps.compute(avg)
freq = getFreq(self.samplerate, N)
return freq, CS
@property
def sensitivity(self):
"""Sensitivity of the data in U^-1, from floating point data scaled
between -1.0 and 1.0 to Units [U].
If the sensitivity is not stored in the measurement file, this
function returns 1.0 for each channel
"""
return self._sens
@sensitivity.setter
def sensitivity(self, sens):
"""Set the sensitivity of the measurement in the file.
Args:
sens: sensitivity data, should be a float, or an array of floats
equal to the number of channels.
"""
if isinstance(sens, float):
# Put all sensitivities equal
2019-10-27 13:19:26 +00:00
sens = sens * np.ones(self.nchannels)
elif isinstance(sens, list):
sens = np.asarray(sens)
valid = sens.ndim == 1
valid &= sens.shape[0] == self.nchannels
valid &= sens.dtype == float
if not valid:
raise ValueError("Invalid sensitivity value(s) given")
with self.file("r+") as f:
f.attrs["sensitivity"] = sens
self._sens = sens
def checkOverflow(self, channels):
"""Coarse check for overflow in measurement.
Return:
True if overflow is possible, else False
"""
for block in self.iterData(channels):
dtype = block.dtype
if dtype.kind == "i":
# minvalue = np.iinfo(dtype).min
maxvalue = np.iinfo(dtype).max
if np.max(np.abs(block)) >= 0.9 * maxvalue:
return True
else:
# Cannot check for floating point values.
return False
return False
def exportAsWave(self, fn=None, force=False, dtype=None, normalize=False, **kwargs):
"""Export measurement file as wave. In case the measurement data is
stored as floats, the values are scaled to the proper integer (PCM)
data format.
Args:
fn: If given, this will be the filename to write to. If the
filename does not end with '.wav', this extension is added.
force: If True, overwrites any existing files with the given name
, otherwise a RuntimeError is raised.
dtype: if not None, convert data to this data type.
Options are 'int16', 'int32', 'float32'.
2019-12-08 13:29:12 +00:00
normalize: If set: normalize the level to something sensible.
"""
if fn is None:
fn = self.fn
fn = os.path.splitext(fn)[0]
if os.path.splitext(fn)[1] != ".wav":
fn += ".wav"
if os.path.exists(fn) and not force:
raise RuntimeError(f"File already exists: {fn}")
2019-12-08 13:29:12 +00:00
if not np.isclose(self.samplerate % 1, 0):
raise RuntimeError(
f"Sample rates should be approximately integer for exporting to Wave to work"
)
2021-04-29 18:48:21 +00:00
# TODO: With VERY large measurment files, this is not possible! Is this
# a theoretical case?
# TODO: add sensitivity? Then use self.data() instead of self.rawData()
2021-04-29 18:48:21 +00:00
data = self.rawData(**kwargs)
2019-12-08 13:29:12 +00:00
if normalize:
2021-04-29 18:48:21 +00:00
# Scale back to maximum of absolute value
maxabs = np.max(np.abs(data))
data = data / maxabs # "data /= maxabs" fails if dtpyes differ
2019-12-08 13:29:12 +00:00
if dtype == None:
dtype = data.dtype # keep existing
logging.debug(f"dtype not passed as arg; using dtype = {dtype}")
# dtype conversion
if dtype == "int16":
newtype = np.int16
newsampwidth = 2
elif dtype == "int32":
newtype = np.int32
newsampwidth = 4
elif dtype == "float32":
newtype = np.float32
elif dtype == "float64":
newtype = np.float64
else:
logging.debug(f"cannot handle this dtype {dtype}")
pass
2019-12-08 13:29:12 +00:00
# Convert range to [-1, 1]
# TODO: this is wrong for float data where full scale > 1
sensone = np.ones_like(self.sensitivity)
data = scaleBlockSens(data, sensone)
if dtype == "int16" or dtype == "int32":
# Scale data to integer range and convert to integers
scalefac = 2 ** (8 * newsampwidth - 1) - 1
data = (data * scalefac).astype(newtype)
wavfile.write(fn, int(self.samplerate), data.astype(newtype))
2019-12-08 13:29:12 +00:00
@staticmethod
def fromtxt(
fn,
skiprows,
samplerate,
sensitivity,
mfn=None,
timestamp=None,
delimiter="\t",
firstcoltime=True,
):
"""Converts a txt file to a LASP Measurement file, opens the associated
Measurement object and returns it. The measurement file will have the
same file name as the txt file, except with h5 extension.
Args:
fn: Filename of text file
skiprows: Number of header rows in text file to skip
samplerate: Sampling frequency in [Hz]
sensitivity: 1D array of channel sensitivities
mfn: Filepath where measurement file is stored. If not given,
a h5 file will be created along fn, which shares its basename
timestamp: If given, a custom timestamp for the measurement
(integer containing seconds since epoch). If not given, the
timestamp is obtained from the last modification time.
delimiter: Column delimiter
firstcoltime: If true, the first column is the treated as the
sample time.
"""
if not os.path.exists(fn):
raise ValueError(f"File {fn} does not exist.")
if timestamp is None:
timestamp = os.path.getmtime(fn)
if mfn is None:
mfn = os.path.splitext(fn)[0] + ".h5"
2019-12-08 13:29:12 +00:00
else:
mfn = os.path.splitext(mfn)[0] + ".h5"
dat = np.loadtxt(fn, skiprows=skiprows, delimiter=delimiter)
if firstcoltime:
time = dat[:, 0]
2019-10-27 13:19:26 +00:00
if not np.isclose(time[1] - time[0], 1 / samplerate):
raise ValueError(
"Samplerate given does not agree with " "samplerate in file"
)
2019-10-27 13:19:26 +00:00
# Chop off first column
dat = dat[:, 1:]
nchannels = dat.shape[1]
2019-10-27 13:19:26 +00:00
if nchannels != sensitivity.shape[0]:
raise ValueError(
f"Invalid sensitivity length given. Should be: {nchannels}"
)
with h5.File(mfn, "w") as hf:
hf.attrs["samplerate"] = samplerate
hf.attrs["sensitivity"] = sensitivity
hf.attrs["time"] = timestamp
hf.attrs["blocksize"] = 1
hf.attrs["nchannels"] = nchannels
ad = hf.create_dataset(
"audio",
(1, dat.shape[0], dat.shape[1]),
dtype=dat.dtype,
maxshape=(1, dat.shape[0], dat.shape[1]),
compression="gzip",
)
ad[0] = dat
return Measurement(mfn)
2019-10-27 13:19:26 +00:00
@staticmethod
def fromnpy(
data,
samplerate,
sensitivity,
mfn,
timestamp=None,
qtys: List[SIQtys] = None,
channelNames: List[str] = None,
force=False,
) -> Measurement:
"""
2023-07-14 11:48:26 +00:00
Converts a numpy array to a LASP Measurement file, opens the
associated Measurement object and returns it. The measurement file will
have the same file name as the txt file, except with h5 extension.
2019-10-27 13:19:26 +00:00
Args:
data: Numpy array, first column is sample, second is channel. Can
also be specified with a single column for single-channel data.
2019-10-27 13:19:26 +00:00
samplerate: Sampling frequency in [Hz]
sensitivity: 1D array of channel sensitivities in [U^-1], where U is
the recorded unit.
mfn: Filepath of the file where the data is stored.
2019-10-27 13:19:26 +00:00
timestamp: If given, a custom timestamp for the measurement
(integer containing seconds since epoch).
qtys: If a list of physical quantity data is given here
channelNames: Name of the channels
force: If True, overwrites existing files with specified `mfn`
name.
2019-10-27 13:19:26 +00:00
"""
if os.path.splitext(mfn)[1] != ".h5":
mfn += ".h5"
if os.path.exists(mfn) and not force:
raise ValueError(f"File {mfn} already exist.")
2019-10-27 13:19:26 +00:00
if timestamp is None:
timestamp = int(time.time())
if data.ndim != 2:
data = data[:, np.newaxis]
try:
len(sensitivity)
except:
raise ValueError("Sensitivity should be given as array-like data type")
sensitivity = np.asarray(sensitivity)
2019-10-27 13:19:26 +00:00
nchannels = data.shape[1]
if nchannels != sensitivity.shape[0]:
raise ValueError(
f"Invalid sensitivity length given. Should be: {nchannels}"
)
2019-10-27 13:19:26 +00:00
if channelNames is not None:
if len(channelNames) != nchannels:
raise RuntimeError("Illegal length of channelNames list given")
if qtys is None:
qtys = [SIQtys.AP] * nchannels
else:
if len(qtys) != nchannels:
raise RuntimeError("Illegal length of qtys list given")
qtyvals = [qty.value for qty in qtys]
with h5.File(mfn, "w") as hf:
hf.attrs["samplerate"] = samplerate
hf.attrs["sensitivity"] = sensitivity
hf.attrs["time"] = timestamp
hf.attrs["blocksize"] = 1
hf.attrs["nchannels"] = nchannels
# Add physical quantity indices
hf.attrs["qtys_enum_idx"] = [qtyval.toInt() for qtyval in qtyvals]
# Add channel names in case given
if channelNames is not None:
hf.attrs["channelNames"] = channelNames
ad = hf.create_dataset(
"audio",
(1, data.shape[0], data.shape[1]),
dtype=data.dtype,
maxshape=(1, data.shape[0], data.shape[1]),
compression="gzip",
)
2019-10-27 13:19:26 +00:00
ad[0] = data
return Measurement(mfn)
@staticmethod
def fromWaveFile(fn, newfn=None, force=False, timestamp=None):
"""Convert a measurement file to a wave file, and return the
measurement handle."""
if timestamp is None:
timestamp = int(time.time())
base_fn = os.path.splitext(fn)[0]
if newfn is None:
newfn = base_fn + ".h5"
if os.path.exists(newfn) and not force:
raise RuntimeError(
f'Measurement file name {newfn} already exists in path, set "force" to true to overwrite'
)
samplerate, data = wavfile.read(fn)
if data.ndim == 2:
nframes, nchannels = data.shape
else:
nchannels = 1
nframes = len(data)
data = data[:, np.newaxis]
sensitivity = np.ones(nchannels)
with h5.File(newfn, "w") as hf:
hf.attrs["samplerate"] = samplerate
hf.attrs["nchannels"] = nchannels
hf.attrs["time"] = timestamp
hf.attrs["blocksize"] = 1
hf.attrs["sensitivity"] = sensitivity
ad = hf.create_dataset(
"audio",
(1, nframes, nchannels),
dtype=data.dtype,
maxshape=(1, nframes, nchannels),
compression="gzip",
)
ad[0] = data
return Measurement(newfn)