lyx_mirror/src/Graph.cpp

240 lines
5.4 KiB
C++
Raw Normal View History

/**
* \file Graph.cpp
* This file is part of LyX, the document processor.
* Licence details can be found in the file COPYING.
*
* \author Dekel Tsur (original code)
* \author Richard Heck (re-implementation)
*
* Full author contact details are available in file CREDITS.
*/
#include <config.h>
#include "Graph.h"
#include "Format.h"
#include "support/debug.h"
#include "support/lassert.h"
#include <algorithm>
using namespace std;
namespace lyx {
bool Graph::bfs_init(int s, bool clear_visited, queue<int> & Q)
{
if (s < 0)
return false;
2017-07-03 13:53:14 -04:00
if (!Q.empty())
Q = queue<int>();
if (clear_visited) {
vector<Vertex>::iterator it = vertices_.begin();
vector<Vertex>::iterator en = vertices_.end();
for (; it != en; ++it)
it->visited = false;
}
if (!vertices_[s].visited) {
Q.push(s);
vertices_[s].visited = true;
}
return true;
}
Graph::EdgePath const
Graph::getReachableTo(int target, bool clear_visited)
{
EdgePath result;
queue<int> Q;
if (!bfs_init(target, clear_visited, Q))
return result;
// Here's the logic, which is shared by the other routines.
// Q holds a list of nodes we have been able to reach (in this
// case, reach backwards). It is initialized to the current node
// by bfs_init, and then we recurse, adding the nodes we can reach
// from the current node as we go. That makes it a breadth-first
// search.
while (!Q.empty()) {
int const current = Q.front();
Q.pop();
if (current != target || theFormats().get(target).name() != "lyx")
result.push_back(current);
vector<Arrow *>::iterator it = vertices_[current].in_arrows.begin();
vector<Arrow *>::iterator const end = vertices_[current].in_arrows.end();
for (; it != end; ++it) {
const int cv = (*it)->from;
if (!vertices_[cv].visited) {
vertices_[cv].visited = true;
Q.push(cv);
}
}
}
return result;
}
Graph::EdgePath const
Graph::getReachable(int from, bool only_viewable,
bool clear_visited, set<int> excludes)
{
EdgePath result;
queue<int> Q;
if (!bfs_init(from, clear_visited, Q))
return result;
while (!Q.empty()) {
int const current = Q.front();
Q.pop();
Format const & format = theFormats().get(current);
if (!only_viewable || !format.viewer().empty())
result.push_back(current);
else if (format.isChildFormat()) {
Format const * const parent =
theFormats().getFormat(format.parentFormat());
if (parent && !parent->viewer().empty())
result.push_back(current);
}
vector<Arrow *>::const_iterator cit =
vertices_[current].out_arrows.begin();
vector<Arrow *>::const_iterator end =
vertices_[current].out_arrows.end();
for (; cit != end; ++cit) {
int const cv = (*cit)->to;
if (!vertices_[cv].visited) {
vertices_[cv].visited = true;
if (excludes.find(cv) == excludes.end())
Q.push(cv);
}
}
}
return result;
}
bool Graph::isReachable(int from, int to)
{
if (from == to)
return true;
queue<int> Q;
if (to < 0 || !bfs_init(from, true, Q))
return false;
while (!Q.empty()) {
int const current = Q.front();
Q.pop();
if (current == to)
return true;
vector<Arrow *>::const_iterator cit =
vertices_[current].out_arrows.begin();
vector<Arrow *>::const_iterator end =
vertices_[current].out_arrows.end();
for (; cit != end; ++cit) {
int const cv = (*cit)->to;
if (!vertices_[cv].visited) {
vertices_[cv].visited = true;
Q.push(cv);
}
}
}
return false;
}
Graph::EdgePath const Graph::getPath(int from, int to)
{
if (from == to)
return EdgePath();
queue<int> Q;
if (to < 0 || !bfs_init(from, true, Q))
return EdgePath();
vector<EdgePath> pathes;
pathes.resize(vertices_.size());
while (!Q.empty()) {
int const current = Q.front();
Q.pop();
vector<Arrow *>::const_iterator cit =
vertices_[current].out_arrows.begin();
vector<Arrow *>::const_iterator end =
vertices_[current].out_arrows.end();
for (; cit != end; ++cit) {
int const cv = (*cit)->to;
if (!vertices_[cv].visited) {
vertices_[cv].visited = true;
Q.push(cv);
// NOTE If we wanted to collect all the paths, then
// we just need to collect them here and not worry
// about "visited".
EdgePath lastpath = pathes[(*cit)->from];
lastpath.push_back((*cit)->id);
pathes[cv] = lastpath;
}
if (cv == to) {
return pathes[cv];
}
}
}
// failure
return EdgePath();
}
void Graph::init(int size)
{
vertices_ = vector<Vertex>(size);
arrows_.clear();
numedges_ = 0;
}
void Graph::addEdge(int from, int to)
{
arrows_.push_back(Arrow(from, to, numedges_));
numedges_++;
Arrow * ar = &(arrows_.back());
vertices_[to].in_arrows.push_back(ar);
vertices_[from].out_arrows.push_back(ar);
}
// At present, we do not need this debugging code, but
// I am going to leave it here in case we need it again.
#if 0
void Graph::dumpGraph() const
{
vector<Vertex>::const_iterator it = vertices_.begin();
vector<Vertex>::const_iterator en = vertices_.end();
for (; it != en; ++it) {
LYXERR0("Next vertex...");
LYXERR0("In arrows...");
std::vector<Arrow *>::const_iterator iit = it->in_arrows.begin();
std::vector<Arrow *>::const_iterator ien = it->in_arrows.end();
for (; iit != ien; ++iit)
LYXERR0("From " << (*iit)->from << " to " << (*iit)->to);
LYXERR0("Out arrows...");
iit = it->out_arrows.begin();
ien = it->out_arrows.end();
for (; iit != ien; ++iit)
LYXERR0("From " << (*iit)->from << " to " << (*iit)->to);
}
}
#endif
} // namespace lyx